88教案网

圆环的面积教学反思

圆环的面积教学反思通用。

优秀的老师教育出来的学子一定是不会太差的,教案一定不要头脑众多,要求不当,意见武断,否则就取不到得良好的教学效果。教案有利于教学目标明确,可以从教材和学生两方面精心设计教学过程。写教案时可以从哪些方面着手呢?考虑到你的需求,我们特意整理了“圆环的面积教学反思”,在此温馨提醒你在浏览器收藏本页。

圆环的面积教学反思 篇1

教学内容:

圆环的面积计算,简单组合图形面积的计算。

教学目标:

1、使学生认识以圆环,掌握圆环的特征,掌握计算圆环面积的方法。

2、培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。

3、会计算组合图形的面积,能根据各种图形的特征和条件,有效地选择计算方法。

教学重、难点:

1、掌握计算圆环面积的方法。

2、掌握求简单组合图形面积的方法。

教学方法:

例证法、类比法、迁移法。

教学过程:

一、复习引入

1、圆面积的计算公式

2、计算圆的面积

r=5厘米d=6米C=15.7分米

二、探索新知

1、出示实物,认识圆环

出示光盘。提问:谁能用语言描述这个光盘?

2、实践操作,感知圆环

(1)刚才我们简单认识了圆环,现在你们能用手上的工具剪出一个圆环吗?

学生用一张白纸剪一个圆环。

(2)学生操作,动手剪环形。(教师巡视指导,帮助学有困难的学生)

(3)说出剪圆环的过程。

让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减去小圆的面积。

3、探究环形面积的计算方法。

(1)小组讨论:如何计算圆环的面积?

(2)反馈讨论结果。

学生汇报时,边说边演示从一个大圆里去掉一个同心小圆变成环形的动态过程:先求出外圆和内圆的面积,再求出环形的面积。

思考:要计算环形的面积需要什么条件?

通过师生交流后,明确要计算环形的面积需要知道外圆(大圆)的半径或直径和内圆(小圆)的半径或直径。

4、应用新知,解决问题。

(1)出示例2:光盘的银色部分是个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?

(2)读题,理解题意。

(3)分析数量关系。

(4)尝试解答。

(5)反馈解答情况。

方法1:大圆的面积—小圆的面积。

方法2:大圆半径的平方与小圆半径的平方差乘以3.14。

观察比较这两种解法,有什么不同?

师生交流,引导学生发现:通过乘法分配律,这两种方法可以相互转化,其实它们是一致的。

小结:圆环面积的计算方法,大圆的面积—小圆的面积=圆环的面积。

学生尝试用字母表示求圆环面积的计算公式。

圆环的面积教学反思 篇2

《圆环面积的计算》是在学生学习了圆的面积的基础进行教学的。我利用多媒体图片播放各类图片,创设学习环境,凸显情景教学的本质问题,创设情境的目的是为了引发学生探究数学问题的兴趣。通过动手操作引出圆环。然后由几个图形的比较,学生通过仔细观察,发现圆环的特点,激发了学生的学习兴趣。引导学生通过操作、交流、讨论、合作学习等方式再通过引导学生主动探究,发现圆环面积的计算方法,回想圆的面积的探索过程,你能得到启发,分一分、剪一剪、拼一拼,看能不能得到环形面积计算的另一种方法。小组合作探究,通过画两个大小不同的同心圆,分圆,剪出环形,拼成近似的平行四边形或拼成近似的长方形,观察边的变化。通过这样的操作、观察,经历了图形的变换过程,并认识到环形的面积的求法。学生在此过程中,激活了已有的知识和生活经验,沟通了新旧知识的联系

本节课我感觉还有几个值得探讨的地方:1,列举生活中的圆环放在哪里更适合?2,圆环是否一定是个同心圆,如果不是同心圆,他还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间部分的面积,也是用大圆面积减去小圆面积。3,在拿到学生的作业在台上展示时,是否应该先出示正确的解答?如果给他们的第一思维呈现出正确的知识,然后再呈现错误的解答,这样学生就能更清晰的掌握方法和知识点。

圆环的面积教学反思 篇3

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。因此,我在认识圆环的设计中安排了经历剪圆环的动手操作过程。

剪切的设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。由于学生体验了剪环形的整个过程,所以在我提出怎样求环形的面积时,学生能很快说出“大圆的面积—小圆的面积=环形的面积”。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。

环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念“环宽”,让学生在环形图中认识了“环宽”。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。

虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来“做数学”确实能够增进学生对知识的理解和掌握。例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,分析验证,比较计算方法,归纳并优化计算公式。练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、“环宽”,练习时除了设计基础的练习与判断题还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

不足之处:

1、练习题没能全部完成,导致没有实现练习的层次性。其实,我准备了不同的有关环形的练习题,由于在刚开始时为了照顾到大多数学生的学习程度,动手操作的时间给的充足,所以到练习题时时间不充分。设计的一道求半环形面积和一道拓展题没完成。

2、知识点拓展的深度不够。在认识圆环特征的时候提出了一个概念:“环宽”,只是让学生在圆环上指出了“环宽‘‘但没有让学生将环宽与大半径、小半径进行对比,从而得出了它们之间的联系与区别,(大半径与小半径都是从圆心到圆上的线段;而环宽是小圆上到大圆上的距离,表示环形的宽度。R-环宽=r r+环宽=R)为今后做题提供很好的保障。

这节课有许多欣喜的地方,也有令我遗憾的地方。但不遗憾的是我从中发现了自身的缺点,使自己在今后的教学中能逐步改进,日趋完善,使自己不断走向成熟。

圆环的面积教学反思 篇4

《圆环面积的计算》教学反思《圆环面积的计算》是在学生学习了圆的面积的基础进行教学的。在本节课上,首先,我利用多媒体图片播放各类图片,创设学习环境,凸显情景教学的本质问题,创设情境的目的是为了引发学生探究数学问题的兴趣。通过动手操作引出圆环。然后由几个图形的比较,学生通过仔细观察,发现圆环的特点,激发了学生的学习兴趣。再通过引导学生主动探究,发现圆环面积的计算方法。学生在此过程中,激活了已有的知识和生活经验,沟通了新旧知识的联系。 其次,我尽可能的赋予丰富的情感因素,用数学的情感去吸引学生,激发他们学习的热情,体会学习数学的乐趣。练习时我也是围绕生活实际,让学生多层次的解决问题,提高学生的应用意识和解决问题的能力。课堂是学生思维成长的土壤,数学课时更应该如此。在课堂评价时,我想了很多鼓励学生的话,学生在肯定和赞赏的语言评价中得到自信和成功的喜悦。这几点都是这节课做得成功的地方。

本节课我感觉还有几个值得探讨的地方:

1,列举生活中的圆环放在哪里更适合?

2,圆环是否一定是个同心圆,如果不是同心圆,他还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间部分的面积,也是用大圆面积减去小圆面积。

3,在拿到学生的作业在台上展示时,是否应该先出示正确的解答?如果给他们的第一思维呈现出正确的知识,然后再呈现错误的解答,这样学生就能更清晰的掌握方法和知识点。

圆环的面积教学反思 篇5

《圆环的面积》教学时,我非常关注学生的生活经验和已有的知识体验。由于学生已经掌握了圆的面积的计算方法,所以本节课的重点是如何激发学生兴趣,引导学生通过操作、交流、讨论、合作学习等方式,自主参与环形面积的计算这一知识的获取过程。在本节课中,我注重引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。

一、在直观演示中,培养学生的思维能力

1.深入了解学生,找准教学的起点

这节课是在学生掌握了求圆的面积基础上进行教学的。而且我事先让学生认识生活中的圆环,并用硬纸板做了环形进行演示,让学生获得直接的经验。大部分同学都能求环形的面积,但同学们对环形特征的认识还不够深刻。因此,我从认识环形的特征入手来完成本节课的教学重点,让学生把做环形的过程说出来,在表述的过程中,自然而然地说出了圆环的特征。这样,学生就学得积极主动,学习效果好。

2.深入钻研教材,促进学生思维的发展

在教学中,我深入钻研教材,充分挖掘教材中蕴含的数学思想与方法,提高学生学习效果。在学生认识环形之后,我有意让学生通过尝试自己练习求圆环面积,总结圆环面积的字母公式,认识到环形面积大小的最根本因素是大、小圆的半径。这样的教学,较好地促进了学生思维的发展,使学生在解决实际问题时,能抓住问题的本质。

二、在动手操作中,培养学生的观察能力

师:请同学们拿出做好的环形,说说你是怎样去做的?

生1:在硬纸板上,我先用圆规画了一个大圆,然后缩短圆规两脚间的距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到了环形。

生2:在硬纸板上,我先用圆规画了一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉也得到了环形。

师:前两位同学都说到了哪几点?

生:都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里剪去小圆,就得到环形。

师:说说日常生活中有哪些物体的表面是环形的?

生:光盘、环形垫片等。

在数学教学中,应坚持以学生为主,把学习的主动权还给学生,让学生自主地进行尝试、

1 操作、观察、想象、讨论、质疑等探究活动,从而亲自发现数学问题潜在的神奇奥秘,领略数学美的真谛。让每一位学生动手进行操作——剪圆环,让学生在动手操作中观察、讨论、归纳、总结,学生在亲身经历的活动中轻而易举就明白了“从大圆里剪去小圆,就得到环形”的道道,从而更容易了解环形的本质特征。这样的教学,不但看到了知识的“静态”存在,更用“动态”的观点引导学生考察了知识,即知识不但是认识的“结果”,更包括认识的“过程”。学生不仅“知其然”,还能“知其所以然”。这样,学生不仅掌握了新知识,也掌握了探索研究问题的方法,同时也培养了探索和创新的精神。

三、在探究发现中,碰撞学生的智慧的火花

师:判别下列图形中,哪些是环形?

师:观察得真仔细!环形的宽度相等。

师:环形中的阴影部分的大小就是环形的面积。你能比较出这几个环形面积的大小吗?

(生纷纷作答)

师:环形的面积与什么有关?

生1:环形的面积与环形的宽度有关。

生2:环形的面积与外圆、内圆的面积有关。

生3:因为圆的面积和半径有关,所以环形的面积与外圆、内圆的半径有关。

(这位学生博得了全班学生热烈的掌声)

师:判断题中其余三个组合图形不是环形,你能求出它们的面积吗?

生1:这些阴影部分的面积都是用大圆面积剪去小圆面积。

生2:不管是不是环形,只要是从大圆里剪去小圆,要求剩下部分的面积,都是用大圆面积剪去小圆面积。

上面的教学中,探求新知,其实就是在圆的面积基础上求圆环的面积。对一些学生来讲,解决它不成问题,所以我采用让学生尝试计算、分析校对、归纳公式的方法,让学生学得积极主动,不断闪出智慧的火花。数学教学,如果找准了起点,注重了学生的发展,就能在整个教学过程中,使学生产生“一波未平,一波又起”之感,让学生始终主动地参与学习活动。这样既能培养学生的学习信心,激发学生学习的主动性,又能切实提高课堂教学的有效性。

圆环的面积教学反思 篇6

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。鉴于这种情况,我反思如下:

一、操作引路,感悟新知。

我先让学生观察课件上生活中的环形物品,谁愿说一说你还见过那些环形物品?火炉盖、餐桌转动的部分、轮胎等。同学们我们已经观察了环形,现在大家动手做环形,(温馨提示:规范操作,注意安全)同学们在紧张制作过程中,我不断巡视,发现有个别同学剪出的小圆和大圆圆心不在同一个点上,我看在眼里,急在心里。小组交流剪环的过程,展示自己作品,通过看一看,摸一摸,说一说,环形是怎样形成的?它有什么特征? 环形的特征:两个圆必须是同心圆,其次,两个圆之间的距离处处相等。环形的宽度等于外圆半径减去内圆半径。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。

二 、合作探究,凝炼新知

反复演示从大圆中取出小圆,通过实践操作得出:环形的面积等于外圆面积减去内圆面积。例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,交流展示,分析验证,比较计算方法,归纳出计算公式, 即S=∏R—∏r或S=∏(R—r)。讨论:这两个算式运用了哪个运算定律?哪个算式计算更为简便?

三、强化练习,深化新知。

为了让学生正确应用大半径、小半径、 “环宽”,练习时除了设计基础的练习与判断题,还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。虽然,在剪环环节耗费了较长的教学时间,但作业反馈较好。没有出现计算方法的错误。计算中错误,有待强化练习中来补救,看来“做数学”确实能够增进学生对知识的理解和掌握。

圆环的面积教学反思 篇7

首先,给学生创设学习情境,要突出情境中数学的本质问题。创设情境的目的是为了引发学生探究数学问题的兴趣。三个图形的比较,学生通过仔细观察,发现圆环的特点,(引出圆环)激发了学生的学习兴趣。再通过引导学生主动探究,发现了圆环面积的计算方法。然后通过观察算式的特点引导出另一种方法。学生在此学习过程中,激活了已有的知识和生活经验,沟通新旧知识的联系。情境本身是为探究服务的,所以我们必须要为学生创设一个能提炼出数学问题的学习情境,促进学生主动探究。

然后,创设的学习情境,要能促进学生情感的培养。要尽可能赋予其丰富的情感因素,用数学的情感去吸引学生,激起他们学习数学的热情,体会学习数学的乐趣。都说课堂是学生思维成长的土壤,我们教师的智慧是阳光和雨露,数学课更是如此。在课堂评价时,我想了很多鼓励学生的话,学生在得到赏心悦目的语言评价中得到自信和兴趣。所以,作为一名新时期的数学教师,我们必须有危机感和紧迫感,加强学习,不断改进我们的课堂教学方法,精心、尽心设计好每一堂课。多鼓励学生,让学生去自己探索新知,在学习中体验成功的喜悦。让枯燥的课堂学习变得有趣,使学生主动参与课堂小学习,孜孜不倦的探究新知,感受学习的乐趣。

圆环的面积教学反思 篇8

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。因此,我在认识圆环的设计中安排了经历剪圆环的动手操作过程。 剪切的设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。由于学生体验了剪环形的整个过程,所以在我提出怎样求环形的面积时,学生能很快说出“大圆的面积—小圆的面积=环形的面积”。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。

环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念“环宽”,让学生在环形图中认识了“环宽”。 在此我有效的利用课件进行对比演示加深学生对环形特征的理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。

虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来“做数学”确实能够增进学生对知识的理解和掌握。

例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,分析验证,比较计算方法,归纳并优化计算公式。

练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、 “环宽”,练习时除了设计基础的练习与判断题还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

圆环的面积教学反思 篇9

本节课的学习目标是认识圆环,掌握圆环面积的计算方法;利用圆环面积的知识解决生活中的实际问题。一上课,我先让学生进行快乐填空,把圆的面积计算公式以及直径与半径的关系作为知识铺垫,预习展示环节设计了三道小题,掌握了圆的面积计算方法,紧接着就设计了两道计算题,一道是 已知半径求面积,一道是已知直径求面积,每组的1号同学板演,2号批改。结果发现知识掌握比较牢固。第三个小题是检测对新知识的预习效果,画出圆环的外圆半径。学生经过预习展示,收获颇多。

课堂顺利进入交流展示环节,我首先组织大家小组合作说说圆环的特点,并讨论圆环面积的计算方法。汇报展示时根据同学们的总结课件出示圆环的特点,两个圆的圆心在同一个点上,也就是同心圆。俩圆之间的距离处处相等。然后先自主学习例2,独立计算圆环的面积,这时,我让每组的2号同学板演。当大多数同学都准确计算出结果时,我看着讲台上的4位同学,心里一愣,怎么会是这个结果呢?刚才如果让4号上台多好啊!时间的关系我立即让他们停了下来,通过评讲发现,4人中仅有一人做对了,其余三人都是计算错误。这也暴露了一个问题,三位数乘法计算掌握的不够好,有的计算了两位就写出了结果,有的虽然计算方法正确,但准确率低。对照学生的板书,我及时让大家观察,怎样计算比较简便?大家一致认为郭江龙的计算简便,他利用了乘法分配率使运算简便。为了让学生好记,我和学生又一起推导出圆环的面积计算公式:S环=3。14×(R2—r2)。然后,看着公式我又追问:要想求圆环的面积,必须知道什么条件?学生异口同声答道:必须知道R和r。如果没告诉怎么办?学生一起研究R、r和环宽之间的关系。得出:R—r=环宽。

课堂进入反馈展示环节,我放手让学生自己独立完成两个习题,结果做的还是不理想,很多同学出错。反思一下自己的教学,原因有三点:

1、第一小题是告诉了大圆的直径和小圆的直径,没有直接告诉R和r,必须先求出来,比例题多了两步,造成有些学生列综合算式出错。

2、圆环这节课虽然比较简单,但毕竟是一节新授课,学生原来对这方面的知识一无所知。每一点,每一步都需要老师的指导、演示。

3、要提高计算能力,还必须牢记一些常用的数字,如2π、3π ……9π以及计算公式。

在教育过程中,一定要遵守教育教学规律,不能操之过急,不能拿自己的水平去要求学生。学生的学习需要一个循序渐进、螺旋上升的过程。只有这样,学生才会进步,才会有收获。

圆环的面积教学反思 篇10

首先,给学生创设学习情境,要突出情境中数学的本质问题。

然后,创设的学习情境,要能促进学生情感的培养。要尽可能赋予其丰富的情感因素,用数学的情感去吸引学生,激起他们学习数学的热情,体会学习数学的乐趣。都说课堂是学生思维成长的土壤,我们教师的智慧是阳光和雨露,数学课更是如此。 本节课我感觉有几个思考的地方。

1、学生展示课前研究的时候,不能与下面的同学展开互动,致使课堂气氛不够活跃。

2、圆环是否一定是个同心圆?如果不是同心圆,它还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间的距离,也就是说大圆面积减去小圆面积。

3、可以利用学生做的圆环来贯穿下面的练习。首先可以让他们量出他们做的圆环的大小半径和环宽,这样就可以形象地让学生理解环宽的概念。避免了我在练习中涉及环宽的概念而说不清楚的尴尬。然后可以求出圆环的面积,这样学生就通过实际操作,真正理解了圆环的面积计算。达到理想的效果。

4、3。14×(R2—r2)这个公式还是出现比较好。学生可以更清楚地运用这个简单的运算方法。

以上就是《圆环的面积教学反思通用》的全部内容,想了解更多内容,请点击圆环面积教学反思查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/133684.html

更多

猜你喜欢

更多

最新更新

更多