88教案网

4.1.1利用函数性质判定方程解的存在

一名优秀的教师在教学时都会提前最好准备,高中教师在教学前就要准备好教案,做好充分的准备。教案可以保证学生们在上课时能够更好的听课,让高中教师能够快速的解决各种教学问题。所以你在写高中教案时要注意些什么呢?经过搜索和整理,小编为大家呈现“4.1.1利用函数性质判定方程解的存在”,欢迎阅读,希望您能够喜欢并分享!

4.1.1利用函数性质判定方程解的存在
一、教学目标:
1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数;
2.让学生了解函数的零点与方程根的联系;
3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用;
4。培养学生动手操作的能力。
二、教学重点、难点
重点:零点的概念及存在性的判定;
难点:零点的确定。
三、复习引入
例1:判断方程x2-x-6=0解的存在。
分析:考察函数f(x)=x2-x-6,其
图像为抛物线容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函数f(x)的图像是连续曲线,因此,
点B(0,-6)与点C(4,6)之间的那部分曲线
必然穿过x轴,即在区间(0,4)内至少有点
X1使f(X1)=0;同样,在区间(-4,0)内也至
少有点X2,使得f(X2)=0,而方程至多有两
个解,所以在(-4,0),(0,4)内各有一解
定义:对于函数y=f(x),我们把使f(x)=0的实数x叫函数y=f(x)的零点
抽象概括
y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。
若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在(a,b)内至少有一个实数解。
f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点
所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点
注意:1、这里所说“若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解”指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;
2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;
3、我们所研究的大部分函数,其图像都是连续的曲线;
4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0,f(4)0,f(-2)f(4)0;
5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/x,有f(-1)xf(1)0但没有零点。
四、知识应用
例2:已知f(x)=3x-x2,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?
解:f(x)=3x-x2的图像是连续曲线,因为
f(-1)=3-1-(-1)2=-2/30,f(0)=30-(0)2=-10,
所以f(-1)f(0)0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解
练习:求函数f(x)=lnx+2x-6有没有零点?
例3判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。
解:考虑函数f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+∞)内有一个交点,在(-∞,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。
练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。
五、课后作业
p133第2,3题

精选阅读

巧解三角函数的图象和性质变式


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案,这是教师工作中的一部分。教案可以让学生能够在教学期间跟着互动起来,帮助教师掌握上课时的教学节奏。那么,你知道教案要怎么写呢?急您所急,小编为朋友们了收集和编辑了“巧解三角函数的图象和性质变式”,欢迎大家与身边的朋友分享吧!

三角函数的图象和性质变式
1.三角函数图象变换:
将函数的图像作怎样的变换可以得到函数的图像?

变式1:将函数的图像作怎样的变换可以得到函数的图像?
解:(1)先将函数图象上各点的纵坐标扩大为原来的2倍(横坐标不变),即可得到函数的图象;
(2)再将函数上各点的横坐标缩小为原来的(纵坐标不变),得到函数的图象;
(3)再将函数的图象向右平移个单位,得到函数的图象.

变式2:将函数的图像作怎样的变换可以得到函数的图像?
解:(1)先将函数图象上各点的纵坐标缩小为原来的(横坐标不变),即可得到函数的图象;
(2)再将函数上各点的横坐标扩大为原来的2倍(纵坐标不变),得到函数的图象;
(3)再将函数的图象向右平移个单位,得到函数的图象.

变式3:将函数的图像作怎样的变换可以得到函数的图像?
解:
另解:
(1)先将函数的图象向右平移个单位,得到函数的图象;
(2)再将函数上各点的横坐标扩大为原来的2倍(纵坐标不变),得到函数的图象;
(3)再将函数图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到函数的图象.

2.三角函数性质
求下列函数的最大、最小值以及达到最大(小)值时的值的集合.
(1);(2)

变式1:已知函数在区间上的最小值是,则的最小值等于()
(A)(B)(C)2(D)3
答案选B

变式2:函数y=2sinx的单调增区间是()
A.[2kπ-,2kπ+](k∈Z)
B.[2kπ+,2kπ+](k∈Z)
C.[2kπ-π,2kπ](k∈Z)
D.[2kπ,2kπ+π](k∈Z)
答案选A.因为函数y=2x为增函数,因此求函数y=2sinx的单调增区间即求函数y=sinx的单调增区间.

变式3:关于x的函数f(x)=sin(x+)有以下命题:
①对任意的,f(x)都是非奇非偶函数;
②不存在,使f(x)既是奇函数,又是偶函数;
③存在,使f(x)是奇函数;
④对任意的,f(x)都不是偶函数。
其中一个假命题的序号是_____.因为当=_____时,该命题的结论不成立。
答案:①,kπ(k∈Z);或者①,+kπ(k∈Z);或者④,+kπ(k∈Z)
解析:当=2kπ,k∈Z时,f(x)=sinx是奇函数.当=2(k+1)π,k∈Z时f(x)=-sinx仍是奇函数.当=2kπ+,k∈Z时,f(x)=cosx,或当=2kπ-,k∈Z时,f(x)=-cosx,f(x)都是偶函数.所以②和③都是正确的.无论为何值都不能使f(x)恒等于零.所以f(x)不能既是奇函数又是偶函数.①和④都是假命题.

函数的性质


《新课标》高三数学(人教版)第一轮复习单元讲座
第四讲—函数的基本性质
一.课标要求(例题5,练习题7,习题9)
1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;
2.结合具体函数,了解奇偶性的含义;
二.命题走向
从近几年来看,函数性质是高考命题的主线索,不论是何种函数,必须与函数性质相关联,因此在复习中,针对不同的函数类别及综合情况,归纳出一定的复习线索。
预测2011年高考的出题思路是:通过研究函数的定义域、值域,进而研究函数的单调性、奇偶性以及最值。
预测明年的对本讲的考察是:
(1)考察函数性质的选择题1个或1个填空题,还可能结合导数出研究函数性质的大题;
(2)以中等难度、题型新颖的试题综合考察函数的性质,以组合形式、一题多角度考察函数性质预计成为新的热点。
三.要点精讲
1.单调性
(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2)(f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);
注意:
○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
○2必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2)
(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
(3)设复合函数y=f[g(x)],其中u=g(x),A是y=f[g(x)]定义域的某个区间,B是映射
g:x→u=g(x)的象集:
①若u=g(x)在A上是增(或减)函数,y=f(u)在B上也是增(或减)函数,则函数
y=f[g(x)]在A上是增函数;
②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y=f[g(x)]在A上是减函数。
(4)判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
○1任取x1,x2∈D,且x1x2;
○2作差f(x1)-f(x2);
○3变形(通常是因式分解和配方);
○4定号(即判断差f(x1)-f(x2)的正负);
○5下结论(即指出函数f(x)在给定的区间D上的单调性)。
(5)简单性质
①奇函数在其对称区间上的单调性相同;
②偶函数在其对称区间上的单调性相反;
③在公共定义域内:
增函数增函数是增函数;减函数减函数是减函数;
增函数减函数是增函数;减函数增函数是减函数。

2.奇偶性
(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;
如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.
如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:
○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
例如:函数的单调性是对某个区间而言的,所以受到区间的限制,如函数分别在和内都是单调递减的,但是不能说它在整个定义域即内是单调递减的,只能说函数的单调递减区间为和
○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:
○1首先确定函数的定义域,并判断其定义域是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
(3)简单性质:
①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;
一个函数是偶函数的充要条件是它的图象关于y轴对称;
若是偶函数,则的图象关于直线对称;
若是奇函数,则的图象关于点中心对称;
②设,的定义域分别是,那么在它们的公共定义域上:
奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇;
3.最值
(1)定义:
最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最小值。
注意:
○1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;
○2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有
f(x)≤M(f(x)≥M)。
(2).函数的最值的求法
①若函数是二次函数或可化为二次函数型的函数,常用配方法。
②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用函数的单调性求最值。如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
③基本不等式法:当函数是分式形式且分子分母不同次时常用此法(但有注意等号是否取得)。
④导数法:当函数比较复杂时,一般采用此法
⑤数形结合法:画出函数图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围。
4.周期性
(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)=f(x),则称f(x)为周期函数;
(2)性质:①f(x+T)=f(x)常常写作若f(x)的周期中,存在一个最小的正数T,则称它为f(x)的最小正周期;
②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为。
(3)周期性不仅仅是三角函数的专利,抽象函数的周期性是高考热点,主要难点是抽象函数周期的发现,主要有几种情况:
①函数值之和等于零型,
即函数对于定义域中任意满足,则有,故函数的周期是
②函数图象有,两条对称轴型。
函数图象有,两条对称轴,即,,从而得,故函数的周期是
③两个函数值之积等于,即函数值互为倒数或负倒数型
若,则得,所以函数的周期是;同理若,则的周期是
四.典例解析
题型一判断证明函数的单调性
例1.(2001天津,19)设,是上的偶函数。
(1)求的值;(2)证明在上为增函数。
解:(1)依题意,对一切,有,即。
∴对一切成立,则,∴,
∵,∴。
(2)(定义法)设,则

由,得,,
∴,
即,∴在上为增函数。
(导数法)∵,

∴在上为增函数
点评:本题用了两种方法:定义法和导数法,相比之下导数法比定义法更为简洁。
例2.(1)求函数的单调区间;
(2)已知若试确定的单调区间和单调性。
解:(1)函数的定义域为,
分解基本函数为、
显然在上是单调递减的,而在上分别是单调递减和单调递增的。根据复合函数的单调性的规则:
所以函数在上分别单调递增、单调递减。
(2)解:,,
令,得或,
令,或
∴单调增区间为;单调减区间为。
点评:该题考察了复合函数的单调性。要记住“同向增、异向减”的规则。
练习1.函数的单调增区间为()
A.;B.;C.;D.
[解析]D;由得或,又函数
在上是减函数,在上是减函数,所以函数
的单调增区间为
2.(2007天津改编)在上定义的函数是奇函数,且,若在区间是减函数,则函数()
A.在区间上是增函数,区间上是增函数
B.在区间上是增函数,区间上是减函数
C.在区间上是减函数,区间上是增函数
D.在区间上是减函数,区间上是减函数
[解析]C;由知的图象关于直线对称,由在区间是减函数知在区间是增函数,又由及是奇函数,得到
,进而得,所以是以4为周期的函数,故在上是减函数。
题型二:判断函数的奇偶性
例3.讨论下述函数的奇偶性:

解:(1)函数定义域为R,

∴f(x)为偶函数;
(另解)先化简:,显然为偶函数;从这可以看出,化简后再解决要容易得多。
(2)须要分两段讨论:
①设方法正确解题过程不对!
②设
③当x=0时f(x)=0,也满足f(-x)=-f(x);
由①、②、③知,对x∈R有f(-x)=-f(x),∴f(x)为偶函数;
(3),∴函数的定义域为,
∴f(x)=log21=0(x=±1),即f(x)的图象由两个点A(-1,0)与B(1,0)组成,这两点既关于y轴对称,又关于原点对称,∴f(x)既是奇函数,又是偶函数;
点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变)。
例4.(2002天津文.16)设函数f(x)在(-∞,+∞)内有定义,下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x)。必为奇函数的有_____(要求填写正确答案的序号)
答案:②④;解析:y=(-x)f[(-x)2]=-xf(x2)=-y;y=f(-x)-f(x)=-y。③可以看成y=-f(-x),那么-f(x)≠—y所以③不正确。
点评:该题考察了判断抽象函数奇偶性的问题。对学生逻辑思维能力有较高的要求。
题型三:最值问题
例题5(2000年上海)已知函数
当时,求函数的最小值;
[解题思路]当时,,这是典型的“对钩函数”,欲求其最小值,可以考虑均值不等式或导数;
[解析]当时,
,。在区间上为增函数。
在区间上的最小值为。
【名师指引】对于函数若,则优先考虑用均值不等式求最小值,但要注意等号是否成立,否则会得到
而认为其最小值为,但实际上,要取得等号,必须使得,这时
所以,用均值不等式来求最值时,必须注意:一正、二定、三相等,缺一不可。其次,不等式恒成立问题常转化为求函数的最值。本题考查求函数的最小值的三种通法:利用均值不等式,利用函数单调性,二次函数的配方法,考查不等式恒成立问题以及转化化归思想;
题型四:周期问题
例题6.(执信中学09届训练题)设是定义在上的正值函数,且满足
.若是周期函数,则它的一个周期是()
.;.;.;.
[解析];由是定义在上的正值函数及得
,,
,所以,即的一个周期是6
例题7.(06年安徽改编)函数对于任意实数满足条件,若则__________
[解析];由得,进而得
所以
例题8.若y=f(2x)的图像关于直线和对称,则f(x)的一个周期为()
A.B.C.D.
解:因为y=f(2x)关于对称,所以f(a+2x)=f(a-2x)。
所以f(2a-2x)=f[a+(a-2x)]=f[a-(a-2x)]=f(2x)。
同理,f(b+2x)=f(b-2x),
所以f(2b-2x)=f(2x),
所以f(2b-2a+2x)=f[2b-(2a-2x)]=f(2a-2x)=f(2x)。
所以f(2x)的一个周期为2b-2a,
故知f(x)的一个周期为4(b-a)。选项为D。
点评:考察函数的对称性以及周期性,类比三角函数中的周期变换和对称性的解题规则处理即可。若函数y=f(x)的图像关于直线x=a和x=b对称(a≠b),则这个函数是周期函数,其周期为2(b-a)。
例题9.已知函数是定义在上的周期函数,周期,函数是奇函数又知在上是一次函数,在上是二次函数,且在时函数取得最小值。
①证明:;
②求的解析式;
③求在上的解析式。
解:∵是以为周期的周期函数,
∴,
又∵是奇函数,
∴,
∴。
②当时,由题意可设,
由得,
∴,
∴。
③∵是奇函数,
∴,
又知在上是一次函数,
∴可设,而,
∴,∴当时,,
从而当时,,故时,。
∴当时,有,
∴。
当时,,

∴。
点评:该题属于普通函数周期性应用的题目,周期性是函数的图像特征,要将其转化成数字特征。

五.思维总结
1.判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(x)=f(x)f(x)f(x)=0;
2.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称这是函数具备奇偶性的必要条件。稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立函数的奇偶性是其相应图象的特殊的对称性的反映;
3.若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是f(0)=0的非充分非必要条件;
4.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,因此根据图象的对称性可以判断函数的奇偶性。
5.若存在常数T,使得f(x+T)=f(x)对f(x)定义域内任意x恒成立,则称T为函数f(x)的周期,一般所说的周期是指函数的最小正周期周期函数的定义域一定是无限集。
6.单调性是函数学习中非常重要的内容,应用十分广泛,由于新教材增加了“导数”的内容,所以解决单调性问题的能力得到了很大的提高,因此解决具体函数的单调性问题,一般求导解决,而解决与抽象函数有关的单调性问题一般需要用单调性定义解决。注意,关于复合函数的单调性的知识一般用于简单问题的分析,严格的解答还是应该运用定义或求导解决。

函数方程


竞赛讲座15
-函数方程
一、相关知识
函数方程的解是

函数方程的解是

二、函数方程的题型
许多函数方程的解决仅以初等数学为工具,解法富于技巧,对人类的智慧具有明显的挑战
意味,因此,函数方程是数学竞赛中一种常见的题型。
1、确定函数的形式
尚无一般解法,需因题而异,其解是多样的:有无限多解的,有有限个解的,有可能无解(如:方程无解)。
2、确定函数的性质
3、确定函数值
三、求函数的解析式
1、换元法
例题1、设函数满足条件,求。

例题2、设函数定义于实数集,且满足条件,求。

:函数在处没有定义,但对所有非零实数有:,求。
答案:
:求满足条件的。

2、赋值法
例题1、设函数定义于实数集上,且,若对于任意实数、,都有:
,求。

例题2、设函数定义于自然数集上,且,若对于任意自然数、,都有:,求。

四、究函数的性质
例题、设函数定义于上,且函数不恒为零,,若对于任意实数、,恒有:。
①求证:
②求证:
③求证:

:若对常数和任意,等式都成立,求证:函数是周期函数。
:设函数定义于实数集上,函数不恒为零,且对于任意实数、,都有:,求证:。

函数的概念与性质


函数的概念与性质
一、学习要求
①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.

二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.
难点:①抽象函数性质的研究;②二次方程根的分布.

三、课前训练
1.函数的定义域是(D)
(A)(B)(C)(D)
2.函数的反函数为(B)
(A)(B)
(C)(D)
3.设则.
4.设,函数是增函数,则不等式的解集为(2,3)

四、典型例题
例1设,则的定义域为()
(A)(B)
(C)(D)
解:∵在中,由,得,∴,
∴在中,.
故选B
例2已知是上的减函数,那么a的取值范围是()
(A)(B)(C)(D)
解:∵是上的减函数,当时,,∴;又当时,,∴,∴,且,解得:.∴综上,,故选C
例3函数对于任意实数满足条件,若,则
解:∵函数对于任意实数满足条件,
∴,即的周期为4,
∴,

例4设的反函数为,若×
,则2
解:
∴m+n=3,f(m+n)=log3(3+6)=log39=2
(另解∵,
∴)
例5已知是关于的方程的两个实根,则实数为何值时,大于3且小于3?
解:令,则方程
的两个实根可以看成是抛物线与轴的两个交点(如图所示),
故有:,所以:,
解之得:
例6已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.如果函数的值域为,求b的值;
解:函数的最小值是,则=6,∴;

文章来源:http://m.jab88.com/j/13002.html

更多

最新更新

更多