西师大版六年级下册《圆锥的体积》数学教案
一、 教学内容
九年义务教育六年制小学教科书《数学》(第一版)六年级第十二册第二单元。
二、 教材分析
1、内容分析:这是本单元实验探究性较强的知识点,通过学生合作探究,理解并掌握圆锥体积的计算方法,且能加以运用。
2、教学重点:正确运用公式计算圆锥的体积,学会解决与计算圆锥形物体有关的实际问题。
3、教学难点:理解圆锥体积公式的推导。
三、 教学目标
1、知识教学点:让学生通过观察、亲自动手做对比实验、分析、验证等活动,初步感知圆锥的体积计算公式的由来,能理解并加以运用。
2、能力训练点:培养学生的观察、比较、分析、综合、概括以及初步的自主探究的能力。
3、思想渗透点:激发学生积极探索新知和学习数学的欲望。
四、 教、学具准备
1、教具:量筒(2只)、圆柱和圆锥(等底等高,可装水)、红颜色的水、不规则的石块。
2、学具:教师指导用硬塑料纸做3组可盛水的圆柱和圆锥(①等底等高 ②等底不等高 ③等高不等底)、适量的水。
五、 教学过程
(一) 创设探究情景,激趣引思
1、教师行为
(1) 谈话:同学们探究了计算圆柱体积的方法。想不想探究圆锥体积的计算方法呢?今天我们用准备好的学具试一试!
(2) 演示实验:先出示实验器材,让学生细心观察比较;在空圆柱里装满红颜色的水,然后倒入一只量筒里;在空圆锥里装满红颜色的水,倒入另一只量筒里,像这样倒三次。
(3) 质疑: 通过老师做实验,同学们看到了什么?想到了什么?发现了什么?有什么感想?
2、学生活动
(1) 听谈话,明确主题。
(2) 细致入微地观察演示实验。
(3) 四人小组合作讨论交流,看到的、想到的。并分组汇报讨论结果。(两只一样的量筒里水面高度一样,用空圆锥倒了三次水,空圆柱倒了一次,它们的底面大小及高度一样,两只量筒里水的体积相等、空圆锥装三次的水与空圆柱装一次的水一样多等)。
(4) 亲自用教师演示用具验证讨论结果。
(设计意图:通过演示实验激发学生的探究兴趣,激活学生思维。)
(二) 提出探究假想,实践验证
1、教师行为
(!)启迪:老师做的实验对我们今天的探究活动有什么启发?请同学们提出自己的设想,并给予各组学生必要的指导,进行小组讨论。
(2)综述讨论结果,提问:所有圆柱的体积都等于圆锥体积的3倍,圆锥体积都等于圆柱体积的1/3,是否正确,为什么?有什么条件限制?再让学生观察老师用的实验器具思考。
(3)促思:同学们设想的条件哪一种正确?大家没有量筒,用你们准备的
学具怎样才能验证假设?
(4)合作探究:创新验证方案,怎样让它具有可操作性,教师适当点拨。
(5)组织学生用确定的方案进行合作探究,实践验证。
(6)诱导:修正假设,反思结果,得出结论,层层深入。
2、学生活动
(1)小组讨论,积极交流,达成共识。
(2)分组汇报讨论结果:对今天的学习有帮助,假设空圆柱和空圆锥里装水的体积近似等于它们的体积;则老师所用的空圆柱的体积将等于空圆锥体积的3倍,空圆锥的体积就等于空圆柱体积的1/3。
(3)根据问题设想条件:圆柱和圆锥、等底等高、等底不等高、等高不等底。
(4)交流确定验证方案:分别用三组准备好的空圆锥装满水倒入空圆柱里,看哪一组装3次刚好装满。
(5)分组实验。
(6)汇报探究情况:等底等高的一组空圆柱和空圆锥才符合原先假设。
(7)小结:圆柱的体积等于和它等底等高的圆锥体积的3倍;圆锥体积等于和它等底等高的圆柱体积的1/3.即
V柱=1/3 V锥=1/3 sh=1/3 ∏r2h
(设计意图:培养学生的分析能力和自主探究学习的能力。)
(三)巩固探究成果,深化理解
1、教师行为
(1) 巩固新知:让学生计算课本例1、例2、做一做,然后集体订正。
(2) 强调:计算圆锥体积时,最容易出现的错误是什么?
(3) 引申练习:一个圆锥形零件,已知下列条件,分别求其体积
①底面半径3厘米,高15厘米;
②底面直径5厘米,高10厘米;
③底面周长12.56厘米,高10厘米;
④底面半径3厘米,比高少70%。
2、学生活动
(1)自主训练,多思多问。
(2)总结:计算时,不能忘记特殊数字“1/3”
(3)灵活运用公式,找出自己知识的不足。
(设计意图:运用探究成果进行强化练习,加深对知识的理解,培养学生综合运用能力。)
(四) 拓展探究思维,迈向生活
1、教师行为
质疑:
(1)出示一个不规则滑石块,怎样求其体积?(教师作指导)
(2)学校食堂买来一车煤炭,倒堆成圆锥体,量得其底面周长和高分别为12.56米,每立方米煤200元,结果付了1300元,问学校有没有多花钱?
2、学生活动
(1)分组讨论,引导得出求其体积的方法:把不规则的物体(不吸水)放进盛水的容器里,求出上升那部分水的体积也就等于不规则物体的体积。
(2)合作探讨明确计算方法。
(设计意图:解决生活中的实际问题,体现“人人学有价值的数学,不同的人在数学上得到不同的发展”的新课程理念,培养学生的创新意识和实践能力。)
教学反思:
立足教材,根据本地区挖掘学生较熟悉的、乐于接受的、具有多方面教育价值,能引起学生思考的素材,真正实现用教材,并加以创新,让探究成功率提高,激起了学生的学习兴趣。在课堂教学中充分发挥学生的主体性,构建了“激趣引思——实践验证——深化理解——迈向生活”的教学模式,促进了学生学习方式的转变。]
教学评析:
教师充分利用教学用具,开发数学课程资源,让学生在探究新知的过程中,进一步发展空间观念和应用数学的能力,实现了让学生在生活中学数学、用数学的愿望。
在教学过程中与学生积极互动,共同发展,处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性,引导学生观察、质疑、探究,在实践中学习,促进学生在教师指导下主动地、富有个性的学习,以学生为本,以问题为中心,以实验探索为主要手段,以讨论为交流方式,以陈述观点及根据为要求,把学生推到了探究性学习的前台,让学生去想、去说、去做、去表达,去自我评价、去体会科学知识的真谛,促进学生全面发展。
北师大版六年级下册《圆柱的体积》数学教案
教学目标
1、通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2、通过圆柱体体积公式的推导,培养学生的分析推理能力。
3、理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重难点
圆柱体体积的计算
教学过程
(一)创设情境,激趣引入。
师:同 学们,周末老师去超市买饮料,看到同一品牌两种包装的饮料售价都是3.5元,你能帮老师挑选出哪一种饮料含量最多吗?
出示:两种圆柱体饮料。
师:对,它们的粗细 、长短都不同,要知道它们的体积才行。
(二)探索尝试,解释交流。
师:怎样求圆柱的体积呢?
师:首先想一想,在学习计算圆的面积时,我们是怎样把圆变成已学过的图形来计算面积的?
(出示 :圆面积推导过程)
1、师:通过刚才的回顾,你们能想办法将圆柱转化 成我们已经学过的立体图形来 求体积吗?(学生:把圆柱切开,拼成长方体)
师:你的想法很好,怎样转化呢?
2、师:请小组内想一下,把怎么把圆柱转化为近似的长方体?并研究转化后的长方体和圆柱体积、底面积、高之间的关系?
3、师:哪个小组愿意展示一下你们小组的研究结果?
师:同学们真了不起!你们的发现非常正确。我们来看一看演示。
(演示将圆柱的割拼过程)
师:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成 了长方体。
你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的?
根据学生的回答师板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
师:如果用V表示体积 ,用S表示圆柱的底面积, 用h表示高。你 能用字母表示圆柱的体积公式吗?
4、师:刚才我们共同研究出了求圆柱的体积的计算公式,你能根据公式计算两瓶饮料的体积吗?(师给出有关数据,由学生计算。)
(三)课堂练习。
1、计算下面圆柱体积。
2、用数学
(1)一根圆柱形柱子,底面半径是0.4米,高是5米。它的体积是多少?
(2)从水杯里面量,水杯的底面积直径是 6厘米,高是16厘米,这个水杯能容多少毫升 水?
(3)金箍棒底面周长是12.56厘米,长是200厘米。这根金箍棒的体积 是多少立方 厘米?如果这根金箍棒是铁制的,每立方厘米铁的质量是7.9g,这根金箍棒的质量是多少千克?
总结
谈谈这节课的收获?
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
北京版六年级下册《圆柱的体积》数学教案
教学目标:
1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积
教学难点:
理解圆柱体积计算公式的推导过程。
教学用具:
圆柱体积演示教具。
教学过程:
一、复述回顾,导入新课
以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)
1、说一说:(1)什么叫体积?常用的体积单位有哪些?
(2)长方体、正方体的体积怎样计算?如何用字母表示?
长方体、正方体的体积=( )×( ) 用字母表示( )
2、求下面各圆的面积(只说出解题思路,不计算。)
(1)r=1厘米; (2)d=4分米; (3)C=6.28米。
(二)揭示课题
你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)
二、设问导读
请仔细阅读课本第8-9页的内容,完成下面问题
(一)以小组合作完成1、2题。
1、猜一猜 ,圆柱的体积可能等于( )×( )
2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系
(1)圆柱的底面积变成了长方体的( )。
(2)圆柱的高变成了长方体的( )。
(3)圆柱转化成长方体后,体积没变。因为长方体的体积=( )×( ),所以圆柱的体积=( )×( )。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为( )
[汇报交流,教师用教具演示讲解2题]
(二)独立完成3、4题。
3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?
先求底面积,列式计算( )
再求体积,列式计算( )
综合算式( )
4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“( )×( )”(杯子厚度忽略不计)
【要求:完成之后以小组互查,有争议之处四人大组讨论。】
教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。
三、自我检测
1、课本9页试一试
2、课本9页练一练1题(只列式,不计算)
【要求:完成后小组互查,教师评价】
四、巩固练习
课本练一练的2、3、4题
【要求:组长先给组员讲解题思路,然后小组内共同完成】
教师进行错例分析。
五、拓展练习
1、课本练一练的5题
2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?
【要求:先组内讨论确定解题思路,再完成】
六、课堂总结,布置作业
1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。
2、作业:课本练一练6题
西师大版六年级下册《圆柱的侧面积》数学教案
教学目标:
1、在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。
2、认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。
3、积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。
课前准备:
教师准备一个带商标纸的罐头盒,一个圆柱图,小鼓、卫生纸、小木头段、圆台形物品。学生每人准备一个圆柱体实物。
教学过程:
一、创设情境
1、让学生交流自己带来的物品,说出它的名字和形状。
2、提出:想一想,现实生活中还有哪些形状是圆柱的物体?鼓励学生大胆发言,并引出今天的课题。
二、认识圆柱
1、让学生先观察自己带来的圆柱体物品,再闭着眼睛摸一摸表面。然后交流摸的感受。
2、讨论:圆柱有几个面?各有什么特点?重点使学生了解圆柱的侧面是一个曲面。
3、在学生交流的基础上,教师介绍圆柱的各部分名称并在图上标出来。
4、让学生拿一个圆柱形实物,指出它的底面、侧面和高。
5、提出:有什么方法可以验证圆柱上下两个圆的大小相等呢?给学生充分发表不同意见的机会。
6、分别拿出圆柱体小木棒、卫生纸卷、瓶子、小鼓等物品,让学生判断是不是圆柱体。
三、圆柱侧面积
1、拿出一个带包装纸的罐头盒,让学生想象一下:如果沿着侧面的一条高把包装纸剪开,再展开,会是什么形状?
2、教师照教材的样子,把罐头盒的商标纸沿着它的一条高剪开,然后展示并把商标纸贴在黑板上。
3、分别提出教材中说一说的两个问题,给学生充分表达自己意见的机会。
4、提出“议一议”的问题,让学生讨论,由长方形的面积等于长乘宽,推导出圆柱的侧面积等于底面周长乘高。
四、尝试应用
1、师生共同测量出罐头盒的周长和高。
2、让学生根据测量的数据尝试计算出它的侧面积,并全班交流计算方法和结果。
五、课堂练习
1、练一练第1题。先让学生读题,并判断用哪张纸比较合适。交流时,重点说一说是怎样判断的。
2、练一练第2题。让学生自己计算罐头盒包装纸的面积,然后交流学生的计算方法和结果。
3、第3题,用字母给出圆柱的半径或直径和高,求圆柱的侧面积。先让学生独立完成,然后全班订正。
六、布置作业:
练一练
板书设计:
圆柱的侧面积
苏教版六年级下册《圆柱的体积》数学教案
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)
2、教学补充例题(删掉)
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(删掉)
(4)做第20页的“做一做”。
学生独立做在练习本上,做完后集体订正.
出示一组习题
一个圆柱的半径4厘米,高3厘米,体积是多少立方厘米?
一个圆柱的直径12厘米,高3厘米,体积是多少立方厘米?
一个圆柱的周长12.56厘米,高3厘米,体积是多少立方厘米?
3、引导思考:如果已知圆柱底面半径,直径,和底面周长和高,圆柱体积的计算公式是怎样的?
4、教学例6
(1)出示例,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(删掉)
(1)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
(2)学生见解例题,师补充
三、巩固练习
1、一个圆柱形水桶底面直径是56厘米,高87厘米,水桶装多少水?
2、一个圆柱的体积是80立方厘米,底面积是16平方厘米,它的高是多少厘米?
3、一个圆柱形粮囤,从里面量得底面半径是1.5米,高是2米。如果每立方米约中750千克,这个粮囤能装多少吨玉米?
4钢管的长80厘米,外直径10厘米,内直径8厘米,求它的体积。
板书设计:
圆柱的体积=底面积×高 V=Sh或V=πr2h
例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
教学反思:
以旧引新,培养学生的自主学习能力。加强直观操作,培养学生的动手操作能力。利用“转化思想”的方法把圆柱转化成近似的长方体,通过小组合作实验推导出圆柱体积的计算方法,使学生在操作中感知,在观察中理解,在比较中归纳,发展了学生的空间观念,培养了学生的动手能力和合作能力。
教学内容:本内容是六年级下册第8页至第9页。
教材分析:
本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。
学生分析:
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课最大化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过 “类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
学习目标:
1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。
2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。
3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。
教学过程:
出示教学情境:一个杯子能装多少水呢?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。
(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)
出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?
(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)
探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)
大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)
长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。
(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)
验证:能否将圆柱转化为学过的立体图形?
让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。
思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?
(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)
用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。
学生讨论交流:
1、把圆柱拼成长方体后,什么变了,什么没变?
2、拼成的长方体与圆柱之间有什么联系?
3、通过观察得到什么结论?
得到:圆柱的体积=底面积×高
V=Sh=πr2h
(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)
练习设计:
1、计算下面各圆柱的体积。
(1)S=60cm2 h=4cm (2)r=1cm h=5cm (3)d=6cm h=10cm
2、算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗?
(设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)
2、试一试:
(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?
(2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)
课堂小结:谈谈这节课你有哪些收获?
(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)
教学反思:
本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。
情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。
北师大版六年级下册《圆锥的体积》数学教案
教学目标
1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
3.培养学生个人的自主学习能力和小组合作学习的能力。
教学重难点
掌握圆锥体体积公式的推导。
教学过程
(一)复习导入:
1.怎样计算圆柱的体积?
(板书:圆柱体的体积=底面积×高)
2.
(1)一个圆柱的底面积是60平方分米,高 15分米,它的体积是多少立方分米?
(2)一个圆柱的底面直径是6分米,高10分米,它的体积是多少立方分米?
3.(出示圆锥体)
问:圆锥有什么特征?
师:怎样计算圆锥的体积呢?
(二)探索尝试,解释交流。
1.师:在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的?
学生回答,教师板书:
圆柱---(转化)---长方体
师:借鉴这种方法,为我们 研究圆锥体体积提供了方便,每个组都准备了一个圆柱体和一个圆锥体。你们比比看,它们有什么相同的地方?
2.问:你发现到什么?
师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高 )
师:既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行? (师把圆锥体套在透明的圆柱体里。)
师:是啊,圆锥体的体积小,你估计一下这两个的体积有什么样关系?
师:用沙子、圆柱体、圆锥 体做实验。
3.谁来汇报你们组是怎样做实验的?
师:你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(板书)
师:同学们得出这个结论非常重要,其他组也是这样的吗?
师:通过刚才同学们的动手我们发现等底等高的圆柱和圆 锥有这样一个倍数关系。我们再来一起回一下实验过程。
大家一起把实验报告表填一下。
我们学过用字母表示数,如果用v表示体积,用s表示底面积,用h表示高。谁来把这个公式整理一下?(板书:)
4.出示另外一组 大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
师:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(举例)
(三)课堂练习
1.求下面 圆锥的体积。
(1)底面半径是2厘米,高3厘米。
(2)底面直径是6分米,高6分米。
2.用数学
(1)如果小麦堆的底面半径为2m,高为1.5m。小麦堆的体积是多 少立方米?
(2)一个圆锥形零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
(3)一个近似圆锥形的 煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?
(四)课堂小结
通过本节课的学习,你有哪些收获?
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
西师大版六年级下册《算利息》数学教案
活动目的:
1、结合百分数的知识,通过运用调查、实验、观察、估算、讨论等方式,培养学生综合运用所学的数学知识、技能和思想法来解决实际问题的能力,增强数学应用意识。
2、通过多种途径查找相关资料,经历走进生活、材料收集、整理交流和表达,培养了学生搜集处理信息的能力。
3、使学生进一步了解有关储蓄知识,认识储蓄的重要意义。
活动准备:
1、分小组调查银行存款利率、国债利率。
2、了解银行的各种储蓄方式及服务特色。
3、结合自已所调查的,总结收获、提出质疑。
4、每小组准备一个计算器。
活动过程:
一、通过预习,交流收获
1、让学生交流课前调查
师:课前同学们都进行了充分的调查,说一说你们有什么收获?你是通过什么途径获得的?
2、出示整存整取,国债年利率。(结合学生回答出示)
二、小组合作,汇报交流
1、出示例题:
小东的爸爸有5000元人民币,请大家帮他算一算购买三年期国债和整存整取三年存款的收益哪个大?相差多少元?
(1) 估算
师:先请同学们猜一猜,买哪一种收益大呢?为什么?
(2) 论证
师:请同学们动笔算一算,究竟是哪种收益大?
(3)交流
师:请同学们说一说,你是怎么做的?哪种收益大?大多少?
整存整取 5000×2.54%×3×80%=302.4(元)
国债 5000×2.54%×3=2348(元)
348-302.4=45.6(元)
(4)讨论
师:相对来说,国债的利益比较大,请同学们说说国债和整存整取各自有什么优点?
2、出示情境题
王刚的爸爸说:“我在国外辛辛苦苦地挣到了20000元,现在这笔钱该用在什么地方呢?”请你们四人一组帮五刚的爸爸设计一个方案。
(1) 小组合作,讨论方案
(2) 小组交流,共同探讨
师:小组内选一个代表,说一说,你们帮王刚的爸爸设计了什么方案?
(3) 选择方案,说明理由
师:如果你作为王刚的爸爸,你会选择哪个方案?为什么?
三、联系实际,拓展延伸
1、议一议
(1) 联系实际,说出想法
师:如果作为你自已有1000元,根据你及你家的实际情况,你打算怎样投资呢?你是怎么想的呢?
(2) 小结:我们实际存钱时,不一定看收益,哪一种适合就选哪种,即标准不同,选择也不同。
2、问一问
(1) 联系实际,提出质疑。
师:在生活中,存钱取钱时,会遇到很多特殊情况?你家遇到过什么特殊情况?或者,你有什么新问题?
(2) 师生共同解决问题。
师:对于这样的特殊情况,你知道怎么办吗?你是怎么知道的?
四、总结本课
师:那通过今天的学习,你学到了什么呢?
总结:通过今天的学习,同学们学到了许多新知识,希望同学们在今后的生活中,注意发现问题,并学会用所学的知识解决问题,做生活中的有心人。
教学设想:
本次活动从学生已有的数学经验和生活经历出发,关注学生的潜能,着眼于学生的终身发展。体现了数学来源于生活,服务于生活的“大众数学”思想。
为了体现活动的实用性、实践性、综合性、趣味性,教师引导学生围绕“调查利率,计算利息”这个主题,做了大量的准备工作:
圆柱的体积
教学内容:教材第10~12页圆柱的体积公式,例1、例2和“练一练”,练习二第1~5题。
教学要求:
1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。
2.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教具准备:圆柱体积演示教具。
教学重点:理解和掌握圆柱的体积计算公式。
教学难点:圆柱体积计算公式的推导。
教学过程:
一、铺垫孕伏:
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求说出解题思路。
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
3.提问:什么叫体积?常用的体积单位有哪些?
4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
二、自主研究:
1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)
2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。(可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)
(5)小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
4.教学例1。
出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)
0.9米=90厘米24×90=2160(立方厘米)
5.做练习二第1题。
让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的?
6.教学“试一试”一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
7.教学例2。
出示例2,审题。小组讨论计算方法,然后学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位,结果保留整数。)
三、巩固练习
第12页,练一练。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。
五、布置作业
练习二第2,3,4,5题及数训。
六、板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=S×h
西师大版六年级下册《数与代数》数学教案
第一课时
教学目标:
1、经历自主回顾和整理“数的认识”的过程。
2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。
3、积极参加自主整理的活动,获得成功的学习体验。
课前预习:
小组合作,交流整理:
回顾以前学过那些数,各举五例。分析不同类数之间有何关系。
教学过程:
一、结合实例,引导学生回忆数的认识
1、回顾数的意义。
师:你学过那些数?
(生回答)
师出示卡片,生齐读。师:举例说明这些数可表示什么?
(生回答)
2、数的分类。
完成问题(1)。
师:把上面的数填到合适的位置
(生回答)
师:每种类型的数,除了上面几种类型,你还能举出其它的吗?
(生回答)
3、数的互化
师出示问题(2)
呈现表格,完成数的互化,交流做法。
4、数的大小比较。
师出示问题(3)
学生自主完成。
5、适时小结。
师:通过刚才的练习,我们复习到数的哪些知识?
(生回答)
二、整理回顾有关倍数和因数的知识
1、引出问题。
师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?
(生回答)
以上问题,我们运用了哪些数学知识呢?(倍数和因数)
明确:我们一起回顾和整理倍数和因数。
2、小组合作,梳理知识。
师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。
整理完善知识结构。
师:在这一部分中我们为什么先学因数和倍数?
组织学生讨论和交流
师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。
三、复习正数和负数
师出示亮亮家4月份收支情况记录。
学生阅读题目内容。
出示问题(1)。
提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)
出示问题(2)。
让学生举例说明什么是正数和负数。
学生自主完成问题(2)。
全班交流。
交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。
四、人民币上的号码
1、让学生拿出自己身上的人民币。
2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。
五、课堂小结
这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?
六、课堂作业
教材第62页1、2、3、4题。
第二课时
教学目标
1、 经历自主回顾和整理整数、小数、分数四则运算的过程。
2、 能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。
3、 体验自主整理数学知识的乐趣,提高计算能力。
课前回顾:
我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。
教学过程:
一、引导学生回顾和整理四则运算
1、师:回想一下我们学过哪些计算?
生回答。
小组长汇报 本组在课前练习中出现的问题。
2、议一议
出示问题(1)生归纳整理。
出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。
生整理汇报。(注意提示0不能做除数)
3、各部分间的关系。
师:加法各部分间有什么关系?
生回答。
引导学生自己总结减法各部分间的关系。
师归纳出加减法互为逆运算。
同样的方法总结乘除法的关系。
说一说
师:上述关系在计算中有哪些应用?
启发学生回答,(进行验算、解方程等)
二、复习四则运算和运算律
1、师:我们学过的运算律有哪些?
小组讨论,自主总结,并写出字母表达式。
2、出示问题(2)
先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。
3、 估算。
(1) 出示问题(1)
先让生独立思考并判断,再回答是如何判断的。
(2) 出示问题(2)
师生共同讨论怎样想,需要几个步骤。
计算问题(2)时可用竞赛的方式,看谁算得又对又快。
三、课堂总结
师:这节课我们整理和回顾了什么内容?需要注意什么?
西师大版六年级下册《统计与概率》数学教案
教学目标:
1、经历收集数据、整理数据、分析数据的活动,体现统计在实际生活中的应用。
2、在运用统计知识解决实际问题的过程中,发展统计观念。
重点难点:
发展统计观念。
教学准备:
投影片。
复习过程:
一、回顾与交流
1、收集数据,统计表。
师:我们班要和六(1)班建立手拉手班级,你想向手拉手的同学介绍哪些情况呢?
学生可能回答
① 姓名、性别。
② 身高、体重。
③ 兴趣爱好。
(1)调查表。
为了清楚地记录你的情况,同学们设计了一种个人情况调查表。
姓名 性别
身高/cm 体重/kg
最喜欢的学科 最喜欢的运动项目
最喜欢的图书 长大后最希望做的工作
最喜欢的电视节目 特长
① 填一填。
② 用语言描述清楚还是表格记录清楚?
(2)统计表。
为了帮助整理和分析全班的数据,同学们又设计了一种统计表。
你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识,与同学进行交流。
2、统计图。
(1)你学过几种统计图?分别叫做什么统计图?各有什么特征?
① 条形统计图。
特征:清楚表示出各科数量的多少。
② 折线统计图。
特征:清楚表示数量的增减变化情况。
③扇形统计图。
特征:清楚表示各种数量的占有率。
(2)教学例题。
①认真观察例题中的图表。
②指出各统计图的名称。
③从图中你能得到哪些信息?
如:从扇形统计图看出,男、女生占全班人数的百分率;
从条形统计图看出,男、女生分别喜欢运动项目的人数。
3、平均数、中位数和众数。
(1)什么是平均数?什么是中位数?什么是众数?
(2)出示例题。
身高/m 1.40 1.43 1.46 1.49 1.52 1.55 1.58
人数 1 3 5 10 12 6 3
体重/kg 30 33 36 39 42 45 48
人数 2 4 5 12 10 4 3
①在上面两组数据中,平均数、中位数和众数各是多少?如果在全班学生中任意抽取一人,体重在36千克及以下可能性大还是39千克及以上可能性大?
a.找出中位数和众数。
b.计算平均数。
②不用计算,你能发现上面两组数据的平均数,中位数和众数之间的大小关系吗?
学生在小组中交流,说一说各自的思维过程和结果。
③你认为用什么数表示上面两组数据的一般水平比较合适?
让学生说出自己的看法,并说明理由。
二、巩固练习
完成练习二十一第1~4题。
西师大版六年级下册《综合统计活动》数学教案
教学内容:
教科书第70~72页例1,第72页课堂活动及练习十六。
教学目标:
1、进一步了解统计表和三种统计图的特点,并能根据实际需要选择合适的统计图来表示数据和反映情况,能利用统计图的特征获取有用的信息。
2、体会数据对决策的作用,体会统计在现实生活中的价值。
教学重点:
根据实际需要选择合适的统计图来表示数据,并能利用统计图的特征获取有用的信息。
根据实际需要选择合适的统计图来表示数据。
教学准备:
教具:小黑板。
学具:计算器。
教学过程:
一、联系实际,引入新课
教师:同学们,我们在学校已经学习了6年时间,同6年前刚进校时相比我们自己有哪些变化?
学生自由发表见解,教师进行适时引导。
教师:是啊,随着年龄的增长我们获得了更多的知识,同时我们的身体也在发生着变化,今天我们就利用已经学过的统计知识来展示我们的身高变化吧!
板书课题:综合统计活动
二、自主探索,学习新知
1、教学例
(1)汇总搜集的资料,填写统计表。 教师:我们课前已经从医务室的档案里查到了自己这6年来的身高数据,现在我们以小组为单位互相交换自己的身高资料,一起填写书71页的统计表(一)。比一比哪组同学协作得最好,完成得更快。 学生合作完成,教师巡视并指导速度比较慢的小组合理进行分工合作。 教师小结:在刚才的合作中,有的小组团队协作意识很强,而且有比较明确的分工,两个同学为一个单位,本单位填好后立即与另一组的两个同学互换资料。这样既合理地安排了时间,同时又避免了合作中的混乱。
(2)完成每组中平均数的计算。
教师:现在我们再次以小组为单位,借助我们手中的计算器,计算出组内同学在每个年级时的平均身高。想一想我们该怎样合理地安排人员,才能更快更准确地计算出平均身高? 引导:两人一组,同时计算同一个年级的平均身高,以确保数据的准确性。
(3)汇总全班同学的身高并计算出平均数。
教师引导:在刚才的合作中,我们进行了有效合理的安排——谁与谁同时计算一、二年级,谁与谁同时计算三、四年级……这样既节约时间,又保证了数据的准确性。现在我们想要汇总全班同学的身高并分别计算出同学们在每个年级时的平均身高,大家想想又应该怎样合理地安排呢?如何有效利用其他小组整理的结果呢?
让同学各抒己见,教师梳理出合理的方案。
教师:正像同学们所想的那样。我们首先要计算出自己小组同学在各年级的身高总数,然后指定各年级的平均身高计算,我们就指派各对应小组成员同时计算。
指派计算各个年级的平均身高计算的小组,每个小组依次汇报本组各年级的身高总数。
汇报计算的结果完成教科书71页统计表(二)。
(4)制作统计图。
教师:根据同学们在各个年级时的平均身高制作成统计图。三种统计图你会怎么选?(强调为什么不会选择扇形统计图,从而突出扇形统计图的特征——反映部分属于总数之间的关系)
教师引导:实际上关于平均身高的统计图我们既可以选择条形统计图又可以选择折线统计图,因为它们都能直观看出数量的多少。两种统计图有什么区别呢?(强调折线统计图突出的特点是还能看出数量的增减变化情况。)
(5)看图和看表分析
教师:观察这幅图你能获得哪些信息?
学生各抒己见,教师引导学生重点观察平均身高每一年各是多少,平均身高在发生怎样的改变?
教师:6年来全班同学的平均身高增加了多少?
教师:观察统计图你能否发现小学身高增长的关键期是什么时候?此时你会给学校伙食团长以及家长提出什么建议?
学生各抒己见,教师引导学生注重锻炼和营养搭配。
(6)然后解决教科书72页第(4)题的第②个问题。
教师:如何才能知道现在班上有多少个同学的身高不低于全班的平均身高?(回顾最简单的数据收集方法——点数)算一算占全班人数的百分之几?
2、课堂总结
教师:今天我们学习了什么?(综合统计活动)你有什么收获?
三、课堂活动
教师:如果我们想把全班同学按现在的身高分成5组,你们会怎么分?每组的统计结果又怎样表示?
学生充分发表自己的看法,教师小结:可以按从最低到最高的身高分出相等的5段,然后统计出每段中的人数。
根据学生的想法完成第三个统计表。
身高(CM)()~()()~()()~()()~()()~()
人数(人)
教师:对于这一个身高资料你认为还可以选择哪种统计图进行整理和分析?(根据学生的回答在WORD中自动生成扇形统计图,并进行分析)
作业布置:
完成练习十六第1题。
教学小结:
你这节课有什么收获?
西师大版六年级下册《正比例》数学教案
教材分析:
正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。
学情分析:
学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。
教学目标:
1、结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学重点:
1、结合丰富的事例,认识正比例,理解正比例的意义。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:
课件
教学过程:
一、在情境中感受两种相关联的量之间的变化规律。
(一)情境一
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(二)情境二
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
(三)情境三
1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?
说说从数据中发现了什么?
3、 小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
(四)归纳正比例的意义
1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
2、购买苹果应付的钱数与质量有什么关系?
3、正方形的周长与边长有什么关系?
4、观察思考成正比例的量有什么特征?
一个量变化,另一个量也随着变化,并且这两个量的比值相同。
5、小结
两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。
二、巩固练习
1、想一想
正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1) 把表填写完整。
(2) 父子的年龄成正比例吗?为什么?
(3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?
板书设计:
正比例
路程÷时间=速度(一定)
总价÷数量=单价(一定)
正方形的周长÷边长=4(一定)
两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。
《西师大版六年级下册《圆柱的体积》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案六年级”专题。
文章来源:http://m.jab88.com/j/114025.html
更多