88教案网

苏教版六年级上册数学《长方体和正方体的认识》教案(一)

作为杰出的教学工作者,为了教学顺利的展开。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。这样不仅拉进了学生与自己的距离,还让学生学到了知识,你们知道那些比较有创意的教学方案吗?下面是由小编为大家整理的“苏教版六年级上册数学《长方体和正方体的认识》教案(一)”,供大家参考,希望能帮助到有需要的朋友。

长方体和正方体的认识

[教学内容]

教科书第10-11页的例1、例2,以及随后的"练一练"和练习三第1~5题。

[教学目标]

1.学生通过观察、操作等活动认识长方体和正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征,理解它们之间的关系。

2.学生在活动中进一步积累探索经验,增强空间观念,发展数学思考。

3.学生体会立体图形学习与实际生活的联系,感受其价值,增强数学学习的兴趣和学好数学的自信心。

[教学重点]探索长方体特征。

[教学难点]理解长方体直观图;理解长方体和正方体之间关系。

[教学准备]每生带一个长方体实物;课件。

[教学过程]

一、创设情境,激发兴趣

1.请观察日常生活中常见的、典型的物体(课件呈现),提问:哪些物体的形状是长方体?

2.说说生活中还有哪些物体的形状是长方体?

二、自主探究、合作交流

1.观察物体,理解直观图。

(1)师激疑:从不同角度观察一个长方体,最多能同时看到几个面?

生试着从不同角度观察自己带来的长方体实物。

汇报交流,达成共识:不论从哪个角度观察,最多只能同时看到3个面。

相机呈现长方体直观图(动画演示:先画出能够看到的面,再勾出不能看到的面)。

(2)认识面、棱、顶点。

观察直观图,说说从一个角度看到了哪些面?哪些面不能看到?

结合长方体直观图,师向学生介绍:两个面相交的线叫做棱,三条棱相交的点叫做顶点。(课件同时在图中作出标注)

结合直观图中棱和顶点,说说它们分别是由哪些面(或棱)在此相交得到的?

在小组里互相摸一摸,指一指长方体物体的面、棱和顶点。

2.探究长方体特征。

(1) 分小组研究长方体特征,填写"长方体的认识"研究报告单。

"长方体的认识"研究报告单

顶点

研究小组:

看一看,量一量,比一比,并在小组里交流。(课件出示研究提纲)

①长方体每个面都是什么形状?哪些面完全相同?

②长方体有几条棱?哪些棱的长度相等?

③长方体有几个顶点?

(2)展示成果,交流方法。

师提问:

①面怎样数不重复不遗漏?你们是如何发现长方体相对的面完全相同?

②棱怎样数不重复不遗漏?你们又是如何发现相对的棱的长度相等的?

③顶点怎样数不重复不遗漏?

学生交流方法,同时配课件演示。

引导小结:长方体有6个面,12条棱,8个顶点,每个面都是长方形,相对面完全相同(也可能有两个相对面是正方形),相对的棱长度相等。

(3)认识长、宽、高

师:长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(课件演示)

拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。

完成练一练和练习三第1题。

3.探究正方体特征。

课件演示长方体渐渐变成正方体,认真观察,发现了什么?

(师述:长、宽、高都相等的长方体叫正方体(也叫做立方体)由于长、宽、高都相等所以称棱长)

根据刚才研究的方法,请你们小组讨论研究出正方体的特征,填写"正方体的认识"研究报告单。

展示成果,交流方法。

归纳小结:正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。

4.比较长、正方体的特征,说说它们的相同点和不同点。

老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。

形体 相同点 不同点

面 棱 顶点 面的形状 面积 棱长

长方体 6个 12条 8个 6个面都是长方形(特殊情况有两个相对的面是正方形) 相对的面的面积相等 每一组互相平行的四条棱的长度相等

正方体 6个 12条 8个 6个面都是正方形 6个面的面积都相等 12条棱的长度都相等

练习三第3题。

独立完成每小题,再交流反馈。

三、巩固运用 拓展创新

1.练习三第2题。

借助直观图,根据图中标注的数据先同桌有条理地指一指、说一说每个面的长和宽,说说相关面之间的关系再独立把有关面的形状和长、宽有条理地写下来。

2.练习三第4题。

(1)先判断课本中摆出的几个图形中分别是长方体还是正方体,再同桌互相指一指每个图形中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。

(2)每个学生用棱长1厘米的正方体摆一个长方体或正方体,在小组内互相说说摆出的长方体(正方体)的长、宽、高(棱长)。

3.练习三第5题。

四、梳理知识 反思总结

你认为本节课,你最大的收获是什么?

精选阅读

苏教版数学六年级上册教案 认识长方体和正方体


[教材简析]

本节内容是在学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上,进一步探索长方体和正方体的特征。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也为进一步学习其他立体图形打好基础。

例1教材一共安排了三个层次学习活动,让学生由浅入深,由表及里地探索长方体的特征。第一层次结合实物(或图片)从整体上感知长方体,第二层次通过对长方体的进一步观察,认识长方体的直观图及其面、棱和顶点,第三层次探索发现长方体面和棱的特征。在此基础上,介绍长方体长、宽、高的含义。例2着重引导学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱、顶点的特征,体会正方体和长方体的联系与区别。

[教学目标]

1、学生通过观察、操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。

2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

3、学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

[教学重点]

认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。

[教具准备]

长方体、正方体教具、CAI课件

[教学过程]

一、观察与操作,认识长方体的特征

1、教学例1

出示画面:有一些长方体的实物和正方体的实物。(如电冰箱、饼干盒、魔方等)

谈话:同学们,这些是我们生活中常见的一些物体,你能说说哪些物体的形状是长方体,哪些物体的形状是正方体?

学生回答,并举例再说说生活中还有哪些物体的形状是长方体和正方体。

出示长方体模型,谈话:长方体有几个面?从不同的角度观察一个长方体,你觉得最多能同时看到几个面?

学生说一说自己的猜想。

分组操作,进行验证。学生分组从不同角度观察一个长方体,看一看最多能同时看到几个面。

学生汇报、演示观察结果,并说一说从某一个角度进行观察,能同时看到的是哪几个面,看不到的是哪几个面。

提问:那么,从不同的角度观察一个正方体,最多能同时看到几个面?

说明:从不同的角度观察一个长方体或正方体,最多能同时看到三个面。

谈话:依据同学们的观察结果,我们画出长方体和正方体的直观图。

出示长方体和正方体的直观图。(标出“面”)

谈话:直观图中线和点都有各自的名称,请同学们自学课本。

学生看书,理解棱和顶点的含义。

指名说一说什么叫做棱,什么叫做顶点?

(两个面相交的线叫做棱,三条棱相交的点叫做顶点。)

(演示)在直观图中闪烁棱和顶点,指名说一说(指一指)这条棱是由哪些面相交得到的,这个顶点是由哪些棱相交得到的?

提问:直观图是用实线和虚线两种线画成,你知道它们表示什么吗?

说明:直观图中的实线表示从某个角度能看到的棱,而虚线则表示从某个角度看不到的棱。

提问:长方体有几条棱和几个顶点?自己数一数。

指名演示数一数长方体面、棱和顶点的个数。集体交流数法。(适当进行指导,让学生能体会到面可以一对一对地数,棱可以一组一组地数,顶点可以4个4个或2个2个地数。)

得出:长方体有6个面,12条棱和8个顶点。

提问:长方体的面和棱有什么特点?

学生观察长方体,说一说自己的猜想和判断。

谈话:同学们观察有了一些直观的感受,下面我们通过量一量、比一比实际操作进行验证。

学生分组活动,利用长方体模型进行操作活动,并在小组中交流。

组织学生在班级中进行交流。

学生1:长方体6个面都是长方形。

学生2:长方体的上面和下面的2个面完全相同,前面和后面的2个面完全相同,左面和右面的2个面完全相同。

学生3:长方体的棱有3组,每组的4条棱长度相等。

可以让学生演示操作,证明得到的结论。

谈话:长方体的上面和下面完全相同,前面和后面完全相同,左面和右面完全相同,我们可以用一个词来表示。学生或教师说出(相对的面)

引导学生理解长方体相对的面完全相同是指的哪两个面;相对的棱长度相等是指的哪四条棱。

出示有两个面是正方形的长方体。

提问:这是长方体吗?这个长方体和刚才同学们观察的长方体有什么不同?

学生:这个长方体有2个相对的面是正方形的,4个面是长方形的。前面观察的长方体的6个面都是长方形的。

小结:长方体有6个面,有的6个面都是长方形,有时6个面中,会有两个相对的面是正方形。长方体相对的面完全相同,相对的棱长度相等。

演示闪动长方体相交于同一顶点的三条棱。

提问:这三条棱的长度相等吗?你知道这三条棱分别叫做什么?(长、宽、高)

说明:相交于同一个顶点的三条棱中,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。

[设计意图:学生对长方体和正方体有一些直观的认识,教学中让学生通过观察、操作、测量、比较等活动,在学生充分感知的基础上,由浅入深、由表及里地探索长方体的特征,并通过交流,对有关发现加以适当的整理和概括。]

2、练一练

说明操作要求:同座两人一组,选择一个长方体实物,先指出它的面、棱和顶点,再量出它的长、宽、高。

学生操作活动,互相说一说。

二、探索与发现,认识正方体的特征

1、教学例2

出示正方体的直观图。

谈话:我们对长方体的特征有了一定的认识,想一想正方体有几个面、几条棱和几个顶点?正方体的面和棱有各有什么特征?看一看,量一量,比一比,并在小组里交流。

学生自主探索,并在小组中交流。

指名在班级中说一说。

学生1:正方体有6个面,12条棱和8个顶点。

学生2:正方体的6个面都是正方形,并且完全相同。

学生3:正方体的12条棱的长度相等。

学生演示操作,验证得到的结论。

提问:长方体和正方体有哪些相同点?有哪些不同点?

出示比较的表格,让学生填一填,再在小组中交流。

名称

长方体

正方体

相同点

不同点

学生在班级中交流比较结果。

得出:长方体和正方体都有6个面、8个顶点和12条棱。不同的是长方体6个面是长方形或其中有2个面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体12条棱都相等。长方体相交于同一顶点的三条棱的长度分别叫做长、宽、高,正方体都叫为棱长。

2、练一练

选择一个正方体实物,量出它的棱长。

学生在小组中操作,在班级中汇报测量结果。

[设计意图:学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱和顶点的特征,体会正方体和长方体的联系与区别,帮助学生能比较完整地把握长方体和正方体的特征。]

三、巩固与拓展,感受变化,加深理解

1、练习三第1题

学生独立看题,和同座同学说一说。

指名在班级中说一说,集体交流。

提问:这三个长方体有什么不同之处吗?(发现第2个和第3个长方体的长比宽要短,第三个长方体的长和高一样长,说明有两个面是正方形的。)

2、练习三第2题

第2题中的4个问题学生先独立解答,在图中标注出数据,然后在组内进行交流。

指名口答,并说一说想法。说明各个面是什么图形及相应的长和宽的长度是多少。

(第4个问题,教师可以换一种提问:还有哪些面和同学们刚才观察的几个面完全相同?)

3、练习三第3题

出示图。

提问:观察这两个直观图,从图中你能知道些什么?

学生看图,并说一说自己观察的结果。

学生:一个是长方体,一个是正方体。

学生:长方体的长、宽、高分别是5厘米、4厘米和5厘米。正方体的棱长是5厘米。

谈话:继续观察,它们的面各有什么特征?

学生观察可以发现长方体前后有2个面是正方形的,其余的四个面都是长方形,并且完全相同。正方体的6个面完全相同。

4、练习三第4题

说明题意,并指名说一说摆成的是长方体还是正方体。

学生独立标出各个几何体的长、宽、高,再在小组中指一指,说一说。

指名在班级中说一说各个几何体的长、宽、高(或棱长)的位置和长度。

5、练习三第5题

出示题,学生读题,理解题意。

独立做一做,做好指名说一说计算过程和想法,集体交流做法。

提问:怎样算长方体的底面的面积?正方体呢?

(学生可以发现,长方体的底面面积就是长乘宽,正方体的底面面积就是棱长乘棱长。)

[设计意图:在巩固练习中,不仅帮助学生加深对长方体和正方体基本特征的认识,也让学生在观察和交流中进一步拓展认识,感受长方体和正方体的变式。并为后面学习长方体和正方体的体积公式做好准备。]

苏教版六年级上册数学《长方体和正方体的认识》教案(三)


案例名称:长方体和正方体的认识 科目:数学

教学对象:学生 年级:六年级 课时:1课时 主备人:雍爱龙

教材内容分析:

《长方体和正方体的认识》是在学生初步认识了长方体和正方体的基础上,进一步研究长方体和正方体,是学生发展空间观念的一次飞跃。通过学习长方体和正方体的特征,进一步建立空间观念,为学习长方体正方体的表面积和体积,学习其他立体几何图形的打下基础。依据以上的认识,所以我把本课的重点定位在,让学生正确地掌握长正方体的特征。

学情分析:

(1)知识上:学生已经直观认识了长正方体的形状,也进行过观察长正方体组成的物体的学习,已具备准确辨认长正方体实物的能力。

(2)经验上:生活中长正方体的物体较多,学生对长正方体的感性认识比较丰富。

(3)能力上:学生已经具备了观察、猜想、验证、归纳等能力,为本节课的学习奠定了基础。

基于学生已有的知识经验,我以问卷的形式进行了课前调研,调研中发现,95%以上的学生能从众多的立体图形中准确地挑出长正方体,对长正方体的特征也有初步地了解,但30%的学生对于特殊的长方体认识模糊,特别是相对面是较大的正方形,如瓷砖,有68%的学生认为是正方形,或者认为是正方体。这一调研结果显示出学生空间观念的欠缺,所以我把本课的教学难点定位为,掌握特殊长方体的特征。

教学目标:

知识与技能:通过观察实物、模型,操作学具,认识长、正方体,掌握长方体和正方体的特征,认识长方体的长、宽、高,理解长方体和正方体的关系。

过程与方法:通过操作、观察、想象、归纳、概括等活动使学生经历建立立体图形表象的过程,进一步发展学生的空间观念。

情感态度价值观:在操作和探索的过程中,要培养学生学习数学的兴趣,进一步增强合作意识。

教学重点:正确地掌握长正方体的特征

教学难点:掌握特殊长方体的特征。

课型:新课 教法:动手操作、自主探究 教具准备:课件、长正方体框架、长正方体物品、土豆

教学过程:

一、导入:

回忆旧知,提出问题

教师引导学生回忆点、线、面,并引出立体图形。

揭示课题:长方体和正方体的认识。

师:同学们能不能从长方体中找到我们已学过的点、线、面的知识?

组织全体学生摸一摸、指一指所找到的面、棱、顶点,思考长方体中的棱、顶点是如何形成的。

课件出示:面、棱、顶点。

师:如果想深入研究长方体,你会提出哪些有关面、棱、顶点的问题?

(若学生有困难,教师示范引领提出关于面、棱、顶点的数量、大小以及关系的数学问题。)

设计意图:学生在短时间内回忆以前所学过的点、线、面,并把它们与长方体的面、棱、顶点联系在一起,有利于让学生明白知识间的联系,以形成知识结构的统一,同时也为获得研究立体图形的学习路径奠定基础。学生虽然在生活中有接触过长方体和正方体,但要从现实的生活物体中抽象出数学问题对他们来说却不是一件容易的事,通过巧妙地揭示名称并以此为深入研究的入口,让学生提出问题,不仅能激发学生学习的动力,而且有助于学生明确思考的方向。

二、学习目标:

1、认识长、正方体,掌握长方体和正方体的特征,认识长方体的长、宽、高,理解长方体和正方体的关系。

2、掌握特殊长方体的特征。

三、教学过程:

实践操作,解决问题

1.借助实物认识特征。

学生分小组讨论。

借助手中的长方体,用数一数、量一量、比一比的方法来研究面、棱和顶点的特征,把自己的发现成果在小组里交流,组长记录到报告单中。

(设计意图:空间观念的培养应通过多种感官协同作用,教学让学生通过对长方体实物或模型进行看一看、摸一摸、比一比、想一想等活动,引导学生认识长方体的面、棱、顶点的数量和空间位置关系,从而对长方体有一个比较全面的认识。)

学生汇报结果。

学情预设:学生对于特征的认识只停留在零散的状态中,尤其是哪些面完全相同?哪些棱长度都相等?教师应让学生广泛交流,形成共识。必要时要出示相对的面完全相同、相对的棱长度都相等的动画课件,帮助学生更加直观、明确的分析问题。

2.制作框架理解长、宽、高。

学生小组合作制作一个长方体框架。

教师:如果遮掉其中的一条棱,你还能想象出这个长方体的大小吗?比划一下。

教师:如果再遮掉一些棱呢?

追问:想一想,至少要剩下哪几条棱,才能保证让我们可以想象出这个长方体的大小?动手试试看。

学生动手操作,并展示自己的思考结果,大组进行质疑交流,得出结论:只要剩下相交于一个顶点的三条棱就可以想象出这个长方体的大小。

反馈小结:这三条棱很重要,缺一不可,它们直接制约着这个长方体的形状和大小。

教师结合课件揭示长、宽、高的定义。并变换位置让学生指出长方体的长、宽、高。

(设计意图:长、宽、高的认识是本节课的难点。教材中制作框架的目的是通过分组引出长、宽、高。我稍作了些调整,因为觉得这种调整在不影响学习目标的情况下,对学生学习欲望的激发似乎比教材的呈现方式更有效。制作框架的目的一是巩固特征或也可认为是验证特征,二是通过制作框架和拆除框架这一来回,学生表象的建立会更丰富。学生经历了一个从迷糊到清晰的过程,对于长、宽、高的意义也有了深刻的理解。)

3.迁移方法研究正方体。

如果要研究正方体,你们觉得应该从哪几个方面入手呢?

教师根据学生的回答整理发现的结果。

引导学生比较长方体和正方体之间的异同点和建立关系。

(学情预设:本课涉及的知识点较多,要丰富学生的真实体验,必须用上一定的时间,否则若蜻蜓点水。考虑到课堂时间有限,正方体的认识可引导学生迁移提出思考的问题,独立研究正方体的特征。)

4.归纳提升,实现建模。

四、随堂小测:

完成第1填空题:

(1)、长方体有( )个面,( )条棱( )个顶点( )棱长相等。

(2)、正方体有( )个面,( )条棱,( )个顶点。每个面都是面积相等的( ),每条棱长都( )。

(3)、长方体中相交与一个顶点的三条棱分别叫做长方体的( ),( ),( )。

(4)、在墨水瓶盒,魔方玩具,排球中,( )的形状是长方体,( )的形状是正方体。

完成2题:说出下面每个长方体的长宽高

让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。

五、课堂小结:

这节课你有什么收获?老师也参与谈收获,总体评价学生的表现,以此激励学生。

板书设计: 长方体 正方体

面 6个面

相对的面向等 相同

棱 12条

相对的4条棱相等 相等

顶点 8个顶点

都是长方形(特殊情况 12条棱 分成3组 8个

下有两个相对的面是正方形) 每组的4条棱长度相等

正方体: 6个面是完全相同的正方形 12条棱长度都相等 8个

苏教版数学六年级上册教案 长方体和正方体的认识


[教材简析]

长方体和正方体是最基本的立体图形,从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。学生在低年级虽然接触过长方体和正方体,但只是直观形象的认识,本节课就是要在学生初步认识长方体和正方体的基础上,引导学生进一步探索长方体和正方体的特征,为继续学习长方体和正方体的表面积和体积奠定基础。

[教学目标]

1.学生通过观察、操作等活动认识长方体和正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征,理解它们之间的关系。

2.学生在活动中进一步积累探索经验,增强空间观念,发展数学思考。

3.学生体会立体图形学习与实际生活的联系,感受其价值,增强数学学习的兴趣和学好数学的自信心。

[教学重点]探索长方体特征。

[教学难点]理解长方体直观图;理解长方体和正方体之间关系。

[教学准备]每生带一个长方体实物;课件。

[教学过程]

一、创设情境,激发兴趣

1.请观察日常生活中常见的、典型的物体(课件呈现),提问:哪些物体的形状是长方体?

2.说说生活中还有哪些物体的形状是长方体?

[说明:通过观察激活学生已有的关于长方体的直观经验,通过交流不断积累长方体表象。]

二、自主探究、合作交流

1.观察物体,理解直观图。

(1)师激疑:从不同角度观察一个长方体,最多能同时看到几个面?

生试着从不同角度观察自己带来的长方体实物。

汇报交流,达成共识:不论从哪个角度观察,最多只能同时看到3个面。

相机呈现长方体直观图(动画演示:先画出能够看到的面,再勾出不能看到的面)。

(2)认识面、棱、顶点。

观察直观图,说说从一个角度看到了哪些面?哪些面不能看到?

结合长方体直观图,师向学生介绍:两个面相交的线叫做棱,三条棱相交的点叫做顶点。(课件同时在图中作出标注)

结合直观图中棱和顶点,说说它们分别是由哪些面(或棱)在此相交得到的?

在小组里互相摸一摸,指一指长方体物体的面、棱和顶点。

[说明:让学生在观察物体的基础上,借助多媒体演示,理解长方体的直观图,认识它的面、棱和顶点,这样既遵循了他们的认识规律,又有利于培养他们的空间观念。]

2.探究长方体特征。

(1) 分小组研究长方体特征,填写“长方体的认识”研究报告单。

“长方体的认识”研究报告单

顶点

研究小组:

看一看,量一量,比一比,并在小组里交流。(课件出示研究提纲)

①长方体每个面都是什么形状?哪些面完全相同?

②长方体有几条棱?哪些棱的长度相等?

③长方体有几个顶点?

(2)展示成果,交流方法。

师提问:

①面怎样数不重复不遗漏?你们是如何发现长方体相对的面完全相同?

②棱怎样数不重复不遗漏?你们又是如何发现相对的棱的长度相等的?

③顶点怎样数不重复不遗漏?

学生交流方法,同时配课件演示。

引导小结:长方体有6个面,12条棱,8个顶点,每个面都是长方形,相对面完全相同(也可能有两个相对面是正方形),相对的棱长度相等。

(3)认识长、宽、高

师:长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(课件演示)

拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。

完成练一练和练习三第1题。

[说明:学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试,让学生带着问题去观察操作,目标明确,任务具体。交流反馈时老师又一次提醒学生“是怎样数的”、“如何发现的”,目的是把握一切机会教学生学会学习方法。]

3.探究正方体特征。

课件演示长方体渐渐变成正方体,认真观察,发现了什么?

(师述:长、宽、高都相等的长方体叫正方体(也叫做立方体)由于长、宽、高都相等所以称棱长)

根据刚才研究的方法,请你们小组讨论研究出正方体的特征,填写“正方体的认识”研究报告单。

展示成果,交流方法。

归纳小结:正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。

[说明:让学生把学习长方体的特征的学习方法迁移到学习正方体的特征上来,使他们又对又快地达到学习目标。]

4.比较长、正方体的特征,说说它们的相同点和不同点。

老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。

形体

相同点

不同点

顶点

面的形状

面积

棱长

长方体

6个

12条

8个

6个面都是长方形(特殊情况有两个相对的面是正方形)

相对的面的面积相等

每一组互相平行的四条棱的长度相等

正方体

6个

12条

8个

6个面都是正方形

6个面的面积都相等

12条棱的长度都相等

练习三第3题。

独立完成每小题,再交流反馈。

[说明:学生已经基本掌握了长方体、正方体各自的特征,所以可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格,使学生明确正方体是特殊的长方体,渗透子集思想。表格的设计把本节的重点内容以图文表结合的形式生动形象直观地展现出来,给人铭刻记忆,融会贯通。]

三、巩固运用 拓展创新

1.练习三第2题。

借助直观图,根据图中标注的数据先同桌有条理地指一指、说一说每个面的长和宽,说说相关面之间的关系再独立把有关面的形状和长、宽有条理地写下来。

2.练习三第4题。

(1)先判断课本中摆出的几个图形中分别是长方体还是正方体,再同桌互相指一指每个图形中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。

(2)每个学生用棱长1厘米的正方体摆一个长方体或正方体,在小组内互相说说摆出的长方体(正方体)的长、宽、高(棱长)。

3.练习三第5题。

[说明:练习内容丰富,多样,既加强了基础知识的训练,又提高学生的思维能力。]

四、梳理知识 反思总结

你认为本节课,你最大的收获是什么?

[总说明]

1.现代学习心理学认为,知识并不能简单地由教师或其他人“传授”给学生,而只能由每个学生依据自己已有的知识和经验主动地加以“建构”。所以在本节课中,从学生的已有经验出发,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师只是起着组织者、引导者、合作者的作用。

2.把教学数学知识(特征及其相互关系)、数学方法(观察、数、发现的方法)、数学思想(子集思想)三者有机地结合起来,使学生既学数学知识,又学数学方法和数学思想。

苏教版六年级上册数学《长方体和正方体的计算》教案(二)


《长方体和正方体的体积计算》教学设计

教学目标:

1、知道长方体、正方体体积的推导过程。

2、经历长方体、正方体体积计算公式的探究过程。

3、通过实验操作、讨论归纳发展学生的空间观念。

4、激发学生的学习兴趣,培养学生爱数学的好情感。

教学重点 :长方体、正方体体积公式的掌握和运用。

教学难点:长方体、正方体体积公式的推导。

教学用具:

教师准备:一大块橡皮泥; 1立方厘米的正方体木块24块;投影仪。

学生准备:1 立方厘米的正方体12个

教学方法 : 实践操作法

教学过程:

一、创设情境

1、填空:

(1)( )叫做物体的体积。

(2)、常用的体积单位有:( )、( )、( )。

(3)、计量一个物体的体积,要看这个物体含有多少个( )。

2、小结:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。

(板书课题)

二、实践探索

1、小组讨论、学习长方体体积的计算,然后汇报:

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

2、提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

3、实验:师生都拿出准备好的12个1立方厘米的小正方块,按第31页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)

4 3 1

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1 立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)

通过上面的实验,你发现了什么?(可让学生分小组讨论)

4、结论:长方体的体积=长×宽×高。

用字母表示:V = a×b×h=abh

5、应用:出示例1 一块正方形的石料,棱长是 6 dm。这块石料的体积是多少立方分米?

学生独立解答。

6、思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

7、结论:正方体的体积=棱长×棱长×棱长

用字母表示为:V=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1、做第43页的"做一做"的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做练习七的第5、6题。

3、补充练习:

①、一个正方体的棱长是最小的合数(单位:分米),它的体积是多少立方米?

②、制作一个长15分米,宽4分米,高6分米的长方体玻璃鱼缸(不带盖),至少需要玻璃多少平方分米?

四、课堂小结。

苏教版六年级上册数学《长方体和正方体的计算》教案(三)


长方体和正方体的体积练习

教学目标:

1、使学生进一步掌握长正方体的特征,知道体积和容积的意义,进一步认识常用体积单位及进率,并掌握简单的换算,进一步掌握长正方体的表面积和体积的计算。

2.使学生在整理与复习中进一步培养归纳的能力和观察、比较、分析等思维能力,发展空间观念。

3.进一步培养学生观察、归纳、概括和类推的思维能力和解决实际问题的能力。

教学重点:能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

教学难点:在解决与体积单位有关的实际问题时,能正确思考及换算。(隐藏在条件里)

教学准备:多媒体课件

教学过程:

一、 自学探究

出示【自学提纲】,以小组为单位在课中进行先学。

1.长度单位有哪些?相邻长度单位间的进率是多少? 面积单位有哪些?相邻面积单位间的进率是多少? 体积单位有哪些?相邻体积单位间的进率是多少?

2.说一说高级单位的数量怎样换算成低级单位的数量?低级单位的数量怎样换算成高级单位的数量?

二、探究交流

1.交流自学提纲

(1)集体回答(师板书)

(2)组织交流:说说你是怎样记住这些进率的?

2.交流自学提纲2

(1)指名学生回答(师板书)。

(2)交流:把高级单位的数量换算成低级单位的数量,都要乘相应的进率。相反把低级单位的数量换算成高级单位的数量,都要除以相应的进率。

跟进练习: 3.8立方米=( )立方分米

420立方分米=( )立方米

3600立方厘米=( )立方分米

12立方分米=( )立方厘米

3.5立方米=( )立方分米=( )立方米( )立方分米 5800立方厘米=( )立方分米=( )立方分米( )立方厘米

3.尝试完成课本P21第13题。

引导学生思考: 每堆木块的体积与它右边的容器的容积有什么关系? 知道一个容器的容积是多少立方厘米,能推算出它能盛多少毫升水吗?

跟进练习:

5.002升=( )毫升=( )立方厘米

79立方分米=( )立方米=( )升

5立方米30立方分米=( ) 立方分米

2吨=( )千克 3500千克=( )吨

5.006吨=( )吨( )千克=( )千克

三、反馈完善

1.练习四的第14题。

先让学生独立完成。然后集体交流,并提醒学生注意每个计算结果的单位是否正确。

2.做练习四第15题。

学生独立完成。交流时引导学生注意每一个计算结果的单位写得是否正确。

3.做练习四第16-17题。

学生独立完成,然后集体交流。

4.练习四的第18题

花坛的占地面积是这个花坛的底面积;求填满这个花坛大约需要多少土,就是求这个花坛的容积;求需要多少平方米的木条,就是求花坛的侧面积。

5.练习四的第19题

学生先读题,然后让学生说说从外面量的数据和从里面量的数据分别与什么有关。

6.阅读"你知道吗"

问:通过阅读,你知道了什么?

四、回顾总结

通过本节课的练习,你有什么收获吗?你觉得那些地方值得注意?

苏教版六年级上册《长方体和正方体的认识(1)》数学教案


苏教版六年级上册《长方体和正方体的认识(1)》数学教案

第一单元 长方体和正方体

第1课时 长方体和正方体的认识(1)

教学内容:

课本第1--2页例1、例2和“练一练”,练习一第1-4题。

教学目标:

1、通过看一看、量一量、比一比来了解长方体和正方体的点、线、面的特征,认识长方体的长、宽、高及正方体的棱,理解长方体和正方体的关系。

2、培养学生观察、动手的能力及归纳的能力。

教学重点:

认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义。

教学难点:

长方体和正方体的特征。

课前准备:

长方体和正方体的教具和学具。

教学过程:

一、认识长方体的特征

1、教学例1

(1)我们生活中,哪些物体的形状是长方体?

学生交流。

(2)教师出示长方体教具

长方体有几个面?分别是哪几个面?

每个人在自己的座位上最多能看到几个面?

学生交流自己所看到的结果。

教师指出:因为我们最多只能看见它的三个面,所以在画长方体的时候一般只画三个面。

教师指导学生画长方体的立体图,并介绍它的棱与顶点,学生和教师一起操作。

长方体有几条棱和几个顶点?它的面和棱各有什么特征?

每个学生通过看一看、量一量、比一比去认识一下,并在小组里交流,然后全班交流。

教师根据学生的交流情况及时板书。

顶点:8个

棱:12条,分三组,每组的长度相等。

面:6个,相对面的形状完全一样。

学生对照自己的教具再说说长方体的点、线、面的特征。

教师进一步介绍学生认识长、宽、高并板在图中板书。

2、完成相应的练一练

3、完成练习三的第1题

学生直接在小组里交流。

二、认识正方体的特征

1、教学例2

(1)出示正方体的教具,问:正方体有几个面、几条棱和几个顶点它们的面和棱各有什么特征?

让学生模仿例1的学习方法,看一看、量一量、比一比,去研究一下正方体的特征。

(2)交流学习的结果,教师根据学生的汇报板书。

(3)比较长、正方体的特征的异同

学生根据板书,结合立体图形,小组讨论交流。

汇报讨论的结果,教师用集合图表示它们的关系。

2、完成相应的练一练。

三、巩固练习

1、完成练习一的第2题

指名学生口答,集体评讲。

2、完成练习一的第3题

(1)学生观察后判断哪个是长方体?哪个是正方体?

(2)学生直接口答。

(3)重点说说其余的几个面是否完全相同?

3、完成练习一的第4题

让学生先分别指出它们的长、宽、高各是哪条线段,然后说说各是多少?

四、课堂总结

通过这节课的学习,你有什么收获呢?快与大家说说吧!

五、布置作业

完成练习一的第4题。

教学反思:

苏教版六年级上册数学《长方体和正方体的表面积》教案(一)


《长方体、正方体的平面展开图》教学设计

【教材分析】

这一课,在本单元中位于"长方体的认识"与"长方体的表面积"之间,起着承上启下作用的一节实践活动内容。目的是让学生通过探索活动,了解长方体和正方体的展开图,培养学生初步的空间观念;"练一练"的目的是通过想像、动手操作进行尝试,强化长方体、正方体与其展开图之间相互转化的认识与理解,进一步培养学生的空间观念。 通过本节课的学习,让学生经历和体验图形的变化过程,让学生进一步认识立体图形与平面图形的关系,进一步发展学生的空间观念,提高学生的语言表达能力,养成良好的正确的研究习惯,为后续的学习打下基础。

【学习目标】

1、知识与技能:通过动手操作,知道长方体、正方体的不同的展开图,加深学生对正方体、长方体特点的认识。

2、过程与方法:经历展开与折叠的活动过程,在想象、操作等活动中,初步感知平面图形与立体图形的关系,发展空间观念。

3、情感态度价值观:激发学习数学的兴趣,渗透一种转化的思想及研究方法的学习,体会学科的价值。

【教学重难点】

1、理解掌握长方体和正方体展开图的特征。

2、进一步发展学生的空间观念。

【教学过程】

一、创设情境,引入课题

复习:

1、要焊接一个长10厘米,宽8厘米,高4厘米的长方体框架,一共需要几厘米铁丝?(焊接接头长度忽略不算)

2、用一根长48厘米的铁丝做成了一个正方体的框架,这个正方体的棱长是多少?

创设情情境,引入课题

1、(出示漂亮的大礼品盒,引发学生研究兴趣)想做漂亮的礼品盒么?打算怎样研究?

2、提出研究的方法并揭示课题:展开与折叠 (设计意图:创设生活情境,激起学生学习的兴趣;研究的欲望,学生和老师共同提出研究方法,引发学生探究的欲望,为学生的后续学习作好认知和心理的准备。)

二、自主探究活动之一

教学例3。

1、引发猜想,唤起思考:长方体、正方体展开后会得到什么形状的图形?

2、学生动手操作,初步探究。

(1)初步感知长方体、正方体的展开图。

教师提出"展开"的要求: ①沿棱剪开,不能剪散 ②边剪边想,相对的面跑到哪里去了? ③把相对的面用相同的符号标出来。 教师巡堂,并与学生一起"展开"长方体和正方体。

(2)初步感知"展开"与"折叠"的关系。 四人小组交流,教师相机(展开活动)提问:"为什么把展开的图形又折叠回去呢?"

(3)请学生把长方体、正方体各种不同的形状的展开图展示在黑板上。

3、揭示概念,探究特征:

(1)揭示展开图的概念:像这样由立体图形展开后得到的平面图形就叫做长方体(正方体)的展开图。

(2)探究长方体、正方体展开的特征:观察黑板上的长方体和正方体的展开图,有什么特点? 引导学生感悟:

①长方体、正方体展开图各小图形的特点

②长方体、正方体展开图的不唯一的特点

③长方体、正方体展开图中相对面的位置特点等 (设计意图:通过让学生动手操作,经历和体验图形的变化过程,使学生知道正方体、长方体的展开图;通过观察、思考感知展开图的不唯一性,加深对正方体、长方体的认识;在找相对面的操作活动中,使学生充分经历展开与折叠的过程,进而发展学生的空间观念。) 三、自主探究活动之二

1、(出示做一做1)下面哪些图形沿虚线对折后能围成正方体?

(1)学生独立思考,进行判断。 能围成正方体的在课本上打√,不能围成正方体的打×。

(2)反馈、辨析。

①把你认为不能围成正方体的找出来。说说自己的想法!(鼓励学生想象折叠的过程) 多媒体课件演示。(设计意图:把不能围成正方体的图形先提取出来组织讨论,一是容易辨析,二是便于学生表达,三是较易发展学生的空间感。把学生已确认不能围成正方体的图形又用多媒体课件演示,体会不能围成正方体的同时,发展了学生的空间观念。)

②找出能围成正方体的图形。

教师提出要求:能确定哪个图形能围成正方体的请想象一下它是怎样围成的;如果无法确认能否围成正方体的请拿出老师为大家提供的学具折一折,再想象一下。相机点拨1:你是怎样围成正方体的?引出其中一个小图形不动,就是把它作为正方体的底面,其它的小图形围起来就得到一个正方体。同时体会折叠方法的不唯一。 相机点拨2:观察正方体的展开图寻找正方体的相对面。 [设计意图:部分学生的正确判断不能代替全班学生知识的掌握,给不同的学生设计不同的要求,在满足不同思维水平学生的需求的同时,更有利于不同层次学生发展空间观念的这一教学目标的达成。]

2、出示做一做2:下面哪些图形沿虚线折叠后能围成长方体?

(1)学生独立思考判断。

(2)小组交流。

(3)反馈、辨析。

①哪些图形沿虚线折叠后能围成长方体?在脑子里想象你是怎样围的。

(学生无疑义的,借助多媒体课件演示。)

②引发争论:4号图形能围成长方体吗?

全班动手折叠验证,说明理由。

多媒体课件演示。

(设计意图:本环节重点放在4号图形的争论上,利用学生的差异资源,充分暴露学生的思维状态,使学生亲身经历猜想、辨析、验证等活动,感受平面图形与立体图形的关系,发展学生数学思考、解决问题的能力与空间观念。)

③哪些图形不能围成长方体?说明理由。

提升思维,深层探究。

四、课后延伸,拓展探究

简单的展开与折叠让我们进一步认识了长方体和正方体,

其实这样的方法还可以研究其它的立体图形。相信同学们随着课后的不断研究一定会有了不起的发现。

长方体和正方体的认识


教学目标 :

1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;

2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;

3、培养学生的观察、概括能力。 教学

教学重点:

掌握正方体的特征。

教学难点:

正方体与长方体的比较。

课前准备:

教法学法 实践法、讨论法

教学过程:

一、复习导入

1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?

2、口答:说出每个图形的长、宽、高各是多少。

3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。

(揭示课题:正方体的认识)

二、概括特征

1、以小组为单位发学具。

2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。

3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。

4、汇报交流

(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。

(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。

(3)让生说说有几个顶点?你是怎么验证的?

5、提问:谁能完整地说一说正方体有什么样的特征?

多指名几个同学说特征。

6、结合直观图小结:正方体6个面是完全相同的正方形,它有12

条棱,每条棱的长度都相等。它还有8个顶点。

7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?

8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。

三、观察比较,体会异同

1、提问:长方体和正方体有哪些相同点,有哪些不同点?

2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。

3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。

4、根据比较结果,想一想正方体和长方体有什么关系?

不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。

练习 完成P20做一做

总结 今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?

作业布置

板书设计 :

正方体的认识

6个面 (完全相同,都是正方形)

立体图形鈫捳教?12条棱 (长度相等)

8个顶点

苏教版六年级上册数学《长方体和正方体的表面积》教案(八)


《长方体和正方体的表面积》教学设计

课题:长方体和正方体的表面积

教学目标 :

1、理解长方体、正方体每个面的长、宽与长方体长、宽、高的关系,从而建立表面积的概念。

2、探索长方体和正方体表面积的计算方法。根据实际情况计算出长方体、正方体的表面积。

3、发展学生空间概念,培养解决问题的能力。

教学重点:表面积的意义。

教学难点:长方体正方体表面积的计算方法

一、 引入课题 学习新知

1.说出长方形面积的计算公式。

2、看图回答。

(1)指出这个长方体的长、宽、高各是多少?

(2)哪些面的面积相等?

3、老师现在做了一个"长6㎝,宽5㎝,高4㎝"的长方体架,要在它的六个面上贴上薄塑料片,你说应该准备多少平方厘米的塑料片呢?

4、请同学们在展开图上标出"上、下、前、后、左、右"六个面,谁也来帮老师在黑板上标明。 生:上台演示、

5、大胆猜想,动手测量,探索求法。

师:你怎样理解表面积?那怎样求长方体或正方体的表面积呢?

生:测量、记录、计算。 (做完后,生汇报)

6、找几名代表说一说所在小组的意见。

解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)

6×5×2+6×4×2+5×4×2 =60+48+40 =148(平方厘米)

解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2) (6×5+6×4+5×4)×2 =74×2

=148(平方厘米)

(4)比较上面两种解法有什么不同?它们之间有什么联系?

二、 结合实际,灵活应用

1、个别学习-------表面积的概念

(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用"上"、"下"、"左"、"右"、"前"、"后"标在6个面上。

(2)沿着长方体和正方体的棱剪开并展平。

(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗? 学生试着说一说。

2、小组合作学习-------计算塑料片的面积

(1)想:这个问题,实际上就是要我们求什么? 使学生明确:就是计算这个长方体的表面积。 (2)学生分组研究计算的方法。

三、 深化提高,综合应用

1、 把一个长10m,宽3m,高2m的长方体木块分成3个小长方体,它的表面积增加了多少平方米?(课件演示)

2、 分组讨论人,交流汇报。

生:沿高的方向坚分(与左右面平行,课件演示),增加了像左右面一样大的四个面。增加的面积是3×2×4=24(m2)。

生:也可以沿长的方向横分(与上下面平行,课件演示),增加了像上下面一样大的四个面。增加的面积是10×3×4=12(m2)。

生:还可以沿宽的方向竖分(与前后面平行,课件演示),增加了像前后面一样大的四个面。增加的面积是10×2×4=80(m2)。

四、 归纳知识,总结学法

1、同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。

2、 结论及板书:

=长×宽×2+长×高×2+宽×高×2 长方体的表面积

=(长×宽+长×高+宽×高)×2

苏教版六年级上册数学《长方体和正方体的表面积》教案(二)


长方体与正方体的展开图

教学内容:苏教版六年级数学

教学目标:

1、通过观察、操作等活动认识正方体和正方体的展开图,能在展开图中找到长方体和正方体相对的面,能判断一些平面图形折叠后能否围成长方体、正方体。

2、初步感受平面图形与立体图形的相互转换,发展空间想象能力。

3、进一步感受图形学习的乐趣,增强合作意识。

教学重、难点: 引导学生观察相对的面在不同展开图上的分布情况,发现其中的规律。

教学准备:

教师准备:记号笔、磁铁、长方体和正方体展开图纸12张。

学生准备:一把剪刀、一个长方体、一个正方体纸盒及课本第123页上的图形

教学过程:

课前热身:我们课前先来欣赏一首古诗好吗?出示古诗,全班齐读。

一、激趣导学

1、出示中秋节商店的图片。

师:瞧,再过几天就是中秋节了,商店里卖什么的特别多?(月饼)王老师也想买个月饼礼盒送给家里的老人。

(出示)从数学的角度看,漂亮的包装盒是什么形体的?(长方体、正方体)

2、师:它是怎么做出来的?你知道吗?(出示各种展开的盒子)

(出示课题)。

二、探究解决

(一)初步感知正方体展开图

1、学习例题,出示正方体,依次说出相对的面。

请一个同学上台来剪。

将剪好的展开图放在实物投影上。

问:观察展开图,你发现了什么?

师:同学们想象一下,左右两个面有点像你头上的哪个部位?(两只耳朵)

2、师:这两只耳朵还可以长在哪儿?

师问:想象一下这两个图形沿虚线折叠能围成正方体吗?怎么想的?(出示不对称的图形。)

出不在同一边了,指名学生上来说一说。

引导学生说出:先确定下面,然后在脑海中想象,依次确定后面、上面、右面、下面、左面、前面。

师小结:今后我们在解决此类问题的时候,就可以用边想象边标注的方法。(板书:想象、标注)

(二)、深入认识展开图的规律

1、师:刚才的正方体是按规定的棱展开的,你能沿着其他棱把正方体展开吗?请你用自己动手试试。

活动提示:1、沿棱剪开,不能剪散。2、如果你的展开图黑板上没有,请贴上来。

师:请同学们仔细观察黑板上的展开图有没有重复?将翻转后和旋转后重复的展开图去掉。

师:请同学们数数,一共发现了多少种展开图?

2、面对这些无序的展开图,让我们给它分分类好吗

学生汇报,板书共分四类的方法。

3、找规律记忆的方法。

4、火眼金睛试一试

5、判断(抢答)

(三)长方体展开图的学习

1、出示:拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,并与同学交流。

要求:展开后交流一下相对的面有什么特点?

引导总结。

长方体展开图也有11种,出示。

三、拓展延伸

1、"练一练"。

学生打开书独立完成。

2、练习题

(1)出示要求:先想象,后标注,再验证。

(2)学生独立完成。

(3)介绍看互相垂直的棱的方法。

3、思考题:小壁虎的难题

4、欣赏展开的美

其实,许多的立体图形都是可以展开的,让我们一起来欣赏一下好吗?

四、总结升华

出示全课总结让学生说一说

苏教版六年级上册数学《长方体和正方体的表面积》教案(五)


《长方体和正方体的表面积》教案

教学目标:

1、通过动手操作,理解长方体的表面积的意义,由此建立表面积的概念。

2、能根据现实情景和信息,通过动手操作、小组合作、观察思考等方法,去探求长方体的计算方法,初步培养学生的探求意识和探求能力。

3、使学生感受数学与生活的密切联系,培养初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

教学重点:理解长方体的表面积的意义,建立表面积的概念。

教学难点:掌握长方体的表面积的计算方法。

教学流程:

一、复习旧知,引入新课

1、复习长方体的特征。

师:同学们,我们上节课已经认识了长方体,知道它们是由6个长方形围成的立体图形。那么它们都有哪些特征?

生:长方体有6个面,12条棱,8个顶点,相对的面完全相同(特殊情况有两个相对的面是正方形),相对的棱长度相等。

2、师:同学们说得真好,都已经掌握了长方体的特征。那么今天我们继续来研究长方体,一起来探究一下长方体的面。

二、实践操作、探究新知

1、教学长方体表面积的概念。

师:现在老师手中有一个长方体纸盒,昨天同学们回家也都做了一个,刚才我们说长方体有6个面,他们分别是,(边说边指),那么如果我们沿着长方体的某些棱剪开,再展开,会是什么形状呢?

接下来学生动手剪(强调要求)

师:请同学们仔细观察,展开后,你发现了什么?

生:我发现原来的立体图形变成了平面图形。

生:我发现长方体展开后还是由6个长方形组成的。

师:同学们观察得真仔细!课件演示(实物展开后贴在黑板上)

师:同学们,你们现在还能像课件中一样找到刚才指出的前面吗?后面又在哪里呢?你还能找出上、下、左、右分别在什么地方吗?

生:能。

师:那么请你们在自己的长方体展开图中标出上、下、左、右、前、后。

师:观察长方体展开图,回答下面的问题:

(1)我们知道长方体有6个面,哪些面的面积是相等的?

生:前后面,左右面,上下面是相等的。

师:为什么?

生:长方体相对的面完全相同。

(2)每个面的长和宽与长方体的长、宽、高有什么关系?(同桌合作)

生:上、下每个面的长和宽是长方体的长和宽,每个面的面积是长x宽;前、后每个面的长和宽是长方体的长和高,每个面的面积是长x高;左、右每个面的长和宽是长方体的高和宽,每个面的面积是宽x高。

师:同学们,像这样我们把长方体6个面的总面积,叫做长方体的表面积。

(板书:表面积)

(2)计算长方体的表面积。

师:那么怎样求长方体的表面积呢?

小组合作:1,先独立思考,记录下自己的方法。

2,小组内交流,探讨哪种方法更简便。

学生作业展示:长x宽x2+长x高x2+宽x高x2

或者(长x宽+长x高+宽x高)x2 分别解释

教学例1。

出示例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?(课件出示)

问题:要求至少要用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?

生:实际上就是求这个长方体包装箱的表面积。

根据上面咱们总结出的公式来求一下表面积

方法一:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2=1.66(平方米)

方法二:(0.7×0.5+0.7×0.4+0.5×0.4)×2=1.66(平方米)

(3)通过刚才的操作与例题,你觉得计算长方体的表面积需要哪些条件,又该如何计算呢?归纳总结

三、深化提高,综合应用

1、完成习题1。

先让学生独立完成,再组织交流。

2、完成习题2。

(1)指导学生读题,理解题意,让学生发现本题中"没有底面"这条信息很重要。

(2)先让学生独立完成,再组织交流。

四、归纳知识,总结学法

师:同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。

苏教版六年级上册数学《长方体和正方体的整理与复习》教案(四)


长方体和正方体整理和复习

黄娅

复习目标

1.进一步掌握长方体和正方体的特征,理解长方体和正方体表面积、体积的计算公式并能利用公式解决一些实际问题。

2.进一步掌握体积单位,能正确进行体积单位的互化,在实际应用中能合理地运用好单位。

3.小组合作学习,互相帮助理解本单元知识,能够理解本单元知识解决实际问题时的应用规律与方法,从而感受到小组合作学习的作用。

复习重难点

1.理解解决实际问题过程中如何正确用好棱长、表面积或体积方面的知识。

2.掌握应用棱、表面积、体积的知识解决实际问题的规律与方法。

教具准备:多媒体课件

教学过程:

一. 回顾棱,面,点基本知识,并展示长方体拆开成平面图的过程。

二. 回顾长方体的表面积公式和体积公式,

长方体的表面积=(长×宽+宽×高+高×长)×2

S表= (a · b + b · h + a · h) ×2

长方体的体积 =长×宽×高 V= abh

底面积×高 V= Sh

正方体表面积公式和体积公式

正方体的表面积=棱长×棱长×6 S=a×a ×6

正方体的表面积=棱长2×6 S=a2×6

正方体的体积=棱长×棱长×棱长 V=a × a × a

正方体的体积=棱长3 V=a3

展示长方体和正方体特征对比,

三. 体积与容积

立方米(m3)

立方分米(dm3)----升(l)

立方厘米(cm3)----毫升(ml)

体积(容积)相邻单位之间的进率是 1000。

四. 巩固练级

练习分为基础篇,提高篇,填空,判断。

苏教版六年级上册数学《长方体和正方体的表面积》教案(九)


《长方体和正方体的表面积计算》教案

庐江晨光小学 吴晓胜

教学内容:

苏教版六年级(上册)第页,第八页第一题~第五题

教学目标:

1、建立长方体和正方体的表面积的概念,理解长方体和正方体的表面积问题源于生活和生产实际。

2、掌握长方体表面积计算的基本思路和方法,能够正确熟练地计算长方体的表面积。

3、养成良好的观察分析的习惯。

4、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

重点难点:理解长方体和正方体表面积的含义,掌握计算方法,能正确地计算表面积。

教学准备:多媒体课件

教具:长方体模型、正方体模型

学具:长方体模型、正方体模型

教学过程:

一、复习准备:

1、你知道正方体的那些知识的呢?

2、长方体有什么样的特征呢?

3、看图说说长方体的长、宽、高各是多少?

4、6个面可以分成三组:上下、左右、前后,分别怎样求其中一个面的面积。(上下面的面积=长×宽,左右面的面积=宽×高。前后面的面积=长×高)。

二、探究新知:

1、探究长方体的表面积计算

谈话:我们经常说资源再利用,今天老师手上有些硬纸板,想要同学们帮我制作一个长方体的纸盒。

例4:做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

(1)题问:求至少要用多少平方厘米硬纸板?实际就是求什么?(通过交流获得实际就是这个长方体6个面的面积之和。)

板书:长方体6个面的总面积

(2)一起回忆:这6个面我们分成3组的(上下面、左右面、前后面),

上、下面面积=长×宽

左、右面面积=宽×高

前、后面面积=长×高

(3)提问:想办法列式计算出这样的一个长方体纸盒至少要用多少平方厘米硬纸板.?(请生回答,师板书在黑板)

(4)列式计算:

解法一: 解法二:

6×4×2+6×5×2+5×4×2 (6×4+6×5+5×4)×2

=48+60+40 =(24+30+20)×2

=148(平方厘米) =74×2

=148(平方厘米)

答:做这个纸盒至少要用148 平方厘米硬纸板。

长方体表面积公式归纳:长×宽×2+长×高×2+宽×高×2

或(长×宽+长×高+宽×高)×2

(5)比较总结:这两种方法公式都很长,且在计算时长×宽与宽×长的意义是一样的,那变式就非常多,同学们有没有什么简单的方法能快速地记住这个公式呢?

(6)做一做

2、探究正方体的面积计算

谈话:方才同学们帮老师算了算做一个长方体的硬纸盒需要多少硬纸板,现在还想要同学帮我算算做一个正方体的硬纸盒需要多少硬纸板?

试一试:做一个棱长3分米的正方体纸盒,至少要用多少平方分米硬纸板?

(1)提问:求至少要用多少平方分米硬纸板?实际就是求正方体6个面的面积。

(2)谈话:正方体6个面的面积有什么特点?

(3)提问:独立试一试并列式计算。

生:3×3×6=54(平方厘米)

正方体的表面积公式归纳:棱长×棱长×6

(4)师要提醒学生养成认真计算、完整单位和答的好习惯。

3、 长方体和正方体的表面积计算方法的有什么相同点

师生总:长方体或者正方体6个面的总面积叫做它的表面积

长方体的表面积=长×宽×2+长×高×2+宽×高×2

或(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

谈话:长方体(或正方体)6个面的总面积,叫作它的表面积。并探讨了长方体和正方体的表面积计算方法。

板书:长方体和正方体的表面积计算

三、拓展练习

1、选择题

(1)做一个不带盖的长方体铁盒,长5分米,宽3分米,高1分米,至少需要多少平方分米的铁皮? ( )

A.5×1+(5×3+1×3)×2=41(平方分米)

B.1×3+(5×1+5×3)×2=43(平方分米)

C.5×3+(5×1+3×1)×2=31(平方分米)

(2)棱长之和是24厘米的正方体,它的表面积是多少平方厘米.( )

A.36  B.24  C.18

(3)一个棱长的总和是60厘米的正方体,求它的表面积算式是 ( )

A.(60÷8)×(60÷8)×60

B.(60÷4)×(60÷4)×6

C.(60÷12)×(60÷12)×6

D.60×60×60

(4)把一个棱长5厘米的正方体,分割成两个长方体,再在表面涂上漆,这两个长方体涂漆的总面积是多少平方厘米。 ( )

A.125  B.150C.175  D.200

2、 油漆长、宽、高分别为2米、1.5 米、1.2米长方体木箱表面,至少要漆多少平方米?

(2×1.5 +2×1.2 + 1.2×1.5 )×2=14.4(平方米)

答:至少要漆多14.4平方米。

5、给棱长为8米的立方体房间粉刷四周和屋顶,至少要刷多少平方米?

8×8×5=320(平方米)

答:至少要刷320平方米。

四、作业

练习二第2-4题。

五、 全课小结

通过这节课的学习你有什么收获?

《苏教版六年级上册数学《长方体和正方体的认识》教案(一)》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学六年级教案”专题。

文章来源:http://m.jab88.com/j/113400.html

更多

猜你喜欢

更多

最新更新

更多