88教案网

高一数学教案:《函数单调性与奇偶性》教学设计

一名优秀的教师在每次教学前有自己的事先计划,作为教师就要好好准备好一份教案课件。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的教师教学。那么如何写好我们的教案呢?下面是小编为大家整理的“高一数学教案:《函数单调性与奇偶性》教学设计”,相信能对大家有所帮助。

高一数学教案:《函数单调性与奇偶性》教学设计

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(2)能从数和形两个角度认识单调性和奇偶性.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.M.jAB88.COm

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以 的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值 开始,逐渐让x在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式 时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如 )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

函数的奇偶性教学设计方案

教学目标

1.使学生了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.

教学重点,难点

重点是奇偶性概念的形成与函数奇偶性的判断

难点是对概念的认识

教学用具

投影仪,计算机

教学方法

引导发现法

教学过程

一. 引入新课

前面我们已经研究了函数的单调性

它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?

(学生可能会举出一些数值上的对称问题, 等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如 和 等.)

结合图象提出这些对称是我们在初中研究的关于 轴对称和关于原点对称问题,而我们还曾研究过关于 轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于 轴对称的吗?

学生经过思考,能找出原因,由于函数是映射,一个 只能对一个 ,而不能有两个不同的,故函数的图象不可能关于 轴对称.最终提出我们今天将重点研究图象关于 轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.

二. 讲解新课

它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?

再提出定义域关于原点对称是函数具有奇偶性的什么条件?

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

精选阅读

高三数学函数的单调性与奇偶性2


一名优秀的教师在教学时都会提前最好准备,作为教师就要精心准备好合适的教案。教案可以让学生们能够更好的找到学习的乐趣,帮助教师提高自己的教学质量。那么如何写好我们的教案呢?下面是小编精心为您整理的“高三数学函数的单调性与奇偶性2”,希望能对您有所帮助,请收藏。

函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.?●案例探究[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)

高一数学函数的奇偶性37


第十一课时函数的奇偶性(2)
【学习导航】
学习要求
1.熟练掌握判断函数奇偶性的方法;
2.熟练单调性与奇偶性讨论函数的性质;
3.能利用函数的奇偶性和单调性解决一些问题.

【精典范例】
一.函数的单调性和奇偶性结合性质推导:
例1:已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)0,试问:F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论
思维分析:根据函数单调性的定义,可以设x1x20,进而判断:
F(x1)-F(x2)=-=符号解:任取x1,x2∈(-∞,0),且x1x2,则-x1-x20
因为y=f(x)在(0,+∞]上是增函数,且f(x)0,
所以f(-x2)f(-x1)0,①又因为f(x)是奇函数
所以f(-x2)=-f(x2),f(-x1)=f(x1)②
由①②得f(x2)f(x1)0
于是F(x1)-F(x2)=-
所以F(x)=在(-∞,0)上是减函数。
【证明】
设,则,∵在上是增函数,
∴,∵是奇函数,∴,,
∴,∴,∴在上也是增函数.

说明:一般情况下,若要证在区间上单调,就在区间上设.

二.利用函数奇偶性求函数解析式:
例2:已知是定义域为的奇函数,当x0时,f(x)=x|x-2|,求x0时,f(x)的解析式.
解:设x0,则-x0且满足表达式f(x)=x|x-2|
所以f(-x)=-x|-x-2|=-x|x+2|
又f(x)是奇函数,有f(-x)=-f(x)
所以-f(x)=-x|x+2|
所以f(x)=x|x+2|
故当x0时
F(x)表达式为f(x)=x|x+2|.

3:定义在(-2,2)上的奇函数在整个定义域上是减函数,若f(m-1)+f(2m-1)0,
求实数m的取值范围.
解:因为f(m-1)+f(2m-1)0
所以f(m-1)-f(2m-1)
因为f(x)在(-2,2)上奇函数且为减函数
所以f(m-1)f(1-2m)
所以
所以m
追踪训练一
1.设是定义在R上的偶函数,且在[0,+∞)上是减函数,则f(-)与f(a2-a+1)
()的大小关系是(B)
A.f(-)f(a2-a+1)
B.f(-)≥f(a2-a+1)
C.f(-)f(a2-a+1)
D.与a的取值无关
2.定义在上的奇函数,则常数0,0;
3.函数是定义在上的奇函数,且为增函数,若,求实数a的范围。
解:定义域是


是奇函数
在上是增函数

解之得
故a的取值范围是
思维点拔:
一、函数奇偶性与函数单调性关系
若函数是偶函数,则该函数在关于"0"对称的区间上的单调性是相反的,且一般情况下偶函数在定义域上不是单调函数;若函数是奇函数,则该函数在关于"0"对称区间上的点调性是相同的.
追踪训练
1.已知是偶函数,其图象与轴共有四个交点,则方程的所有实数解的和是(C)
420不能确定
2.定义在(-∞,+∞)上的函数满足f(-x)=f(x)且f(x)在(0,+∞)上,则不等式f(a)f(b)等价于(C)
A.abB.ab
C.|a||b|D.0≤ab或ab≥0
3.是奇函数,它在区间(其中)上为增函数,则它在区间上(D)
A.是减函数且有最大值
B.是减函数且有最小值
C.是增函数且有最小值
D.是增函数且有最大值
4已知函数ax7+6x5+cx3+dx+8,且f(-5)=-15,则f(5)=31.
5.定义在实数集上的函数f(x),对任意,有且。
(1)求证;(2)求证:是偶函数。
解(1)令,则有
(2)令,则有
这说明是偶函数
学生质疑
教师释疑

人教版高一数学《函数奇偶性》教案


人教版高一数学《函数奇偶性》教案

指对数的运算
一、反思数学符号:“”“”出现的背景
1.数学总是在不断的发明创造中去解决所遇到的问题。
2.方程的根是多少?;
①.这样的数存在却无法写出来?怎么办呢?你怎样向别人介绍一个人?描述出来。
②..那么这个写不出来的数是一个什么样的数呢?怎样描述呢?
①我们发明了新的公认符号“”作为这样数的“标志”的形式.即是一个平方等于三的数.
②推广:则.
③后又常用另一种形式分数指数幂形式
3.方程的根又是多少?①也存在却无法写出来??同样也发明了新的公认符号“”专门作为这样数的标志,的形式.
即是一个2为底结果等于3的数.
②推广:则.
二、指对数运算法则及性质:
1.幂的有关概念:
(1)正整数指数幂:=().(2)零指数幂:).
(3)负整数指数幂:(4)正分数指数幂:
(5)负分数指数幂:(6)0的正分数指数幂等于0,负分指数幂没意义.
2.根式:
(1)如果一个数的n次方等于a,那么这个数叫做a的n次方根.如果,那么x叫做a的次方根,则x=(2)0的任何次方根都是0,记作.(3)式子叫做根式,n叫做根指数,a叫做被开方数.
(4).(5)当n为奇数时,=.(6)当n为偶数时,==.
3.指数幂的运算法则:
(1)=.(2)=.3)=.4)=.
二.对数
1.对数的定义:如果,那么数b叫做以a为底N的对数,记作,其中a叫做,叫做真数.
2.特殊对数:
(1)=;(2)=.(其中
3.对数的换底公式及对数恒等式
(1)=(对数恒等式).(2);(3);(4).
(5)=(6)=.(7)=.(8)=;(9)=
(10)
三、经典体验:
1.化简根式:;;;
2.解方程:;;;;
3.化简求值:

4.【徐州六县一区09-10高一期中】16.求函数的定义域。

四、经典例题
例:1画出函数草图:.
练习:1.“等式log3x2=2成立”是“等式log3x=1成立”的▲.必要不充分条件
例:2.若则▲.
练习:1.已知函数求的值▲..

例3:函数f(x)=lg()是(奇、偶)函数。

点拨:
为奇函数。

练习:已知则.
练习:已知则的值等于.
练习:已知定义域为R的函数在是增函数,满足且,求不等式的解集。
例:4解方程.
解:设,则,代入原方程,解得,或(舍去).由,得.经检验知,为原方程的解.
练习:解方程.
练习:解方程.
练习:解方程:.
练习:设,求实数、的值。

解:原方程等价于,显然,我们考虑函数,显然,即是原方程的根.又和都是减函数,故也是减函数.
当时,;当时,,因此,原方程只有一个解.分析:注意到,,故倒数换元可求解.
解:原方程两边同除以,得.设,原方程化为,化简整理,得.,,即..
解析:令,则,∴原方程变形为,解得,。由得,∴,
即,∴,∴。由得,∴,∵,∴此方程无实根。故原方程的解为。评注:将指数方程转化为基本型求解,是解决该类问题的关键。
解析:由题意可得,,,原方程可化为,即。
∴,∴。
∴由非负数的性质得,且,∴,。
评注:通过拆项配方,使问题巧妙获解。
例5:已知关于的方程有实数解,求的取值范围。

已知关于的方程的实数解在区间,求的取值范围。

反思提炼:1.常见的四种指数方程的一般解法
(1)方程的解法:
(2)方程的解法:
(3)方程的解法:
(4)方程的解法:
2.常见的三种对数方程的一般解法
(1)方程的解法:
(2)方程的解法:
(3)方程的解法:
3.方程与函数之间的转化。
4.通过数形结合解决方程有无根的问题。
课后作业:
1.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是
[答案]2n+1-2
[解析]∵y=xn(1-x),∴y′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.
f′(2)=-n2n-1-2n=(-n-2)2n-1.
在点x=2处点的纵坐标为y=-2n.
∴切线方程为y+2n=(-n-2)2n-1(x-2).
令x=0得,y=(n+1)2n,
∴an=(n+1)2n,
∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.
2.在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点M,过点P作的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
解析:设则,过点P作的垂线
,所以,t在上单调增,在单调减,。

高一数学函数的奇偶性38


第十节函数的奇偶性
一.教学目标:1.知识与技能:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;
2.过程与方法:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.
3.情态与价值:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。
二.教学重点和难点:教学重点:函数的奇偶性及其几何意义。
教学难点:判断函数的奇偶性的方法与格式
三.学法与教学方法
学法:学生通过自己动手计算,独立地去经历发现,猜想与证明的全过程,从而建立奇偶函数的概念.
教学方法:探究交流法
四.教学思路
(一)创设情景,揭示课题
“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?
观察下列函数的图象,总结各函数之间的共性.
-10
-1
通过讨论归纳:函数是定义域为全体实数的抛物线;函数是定义域为全体实数的折线;函数是定义域为非零实数的两支曲线,各函数之间的共性为图象关于轴对称.观察一对关于轴对称的点的坐标有什么关系?
归纳:若点在函数图象上,则相应的点也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.
(二)研探新知
函数的奇偶性定义:
1.偶函数
一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数.(学生活动)依照偶函数的定义给出奇函数的定义.
2.奇函数
一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数.
注意:
①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个,则也一定是定义域内的一个自变量(即定义域关于原点对称).
3.具有奇偶性的函数的图象的特征
偶函数的图象关于轴对称;奇函数的图象关于原点对称.
(三)质疑答辩,排难解惑,发展思维.
例1.判断下列函数是否是偶函数.
(1)(2)
解:函数不是偶函数,因为它的定义域关于原点不对称.
函数也不是偶函数,因为它的定义域为,并不关于原点对称.
例2.判断下列函数的奇偶性
(1)(2)(3)(4)
解:(略)
小结:利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定;
③作出相应结论:若;
若.
例3.判断下列函数的奇偶性:


分析:先验证函数定义域的对称性,再考察.
解:(1)>0且>=<<,它具有对称性.因为,所以是偶函数,不是奇函数.
(2)当>0时,-<0,于是
当<0时,->0,于是
综上可知,在R-∪R+上,是奇函数.
例4.利用函数的奇偶性补全函数的图象.
教材P41思考题:
规律:偶函数的图象关于轴对称;奇函数的图象关于原点对称.
说明:这也可以作为判断函数奇偶性的依据.
例5.已知是奇函数,在(0,+∞)上是增函数.
证明:在(-∞,0)上也是增函数.
证明:(略)
小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.
(四)巩固深化,反馈矫正.
(1)课本P42练习1.2P46B组题的1.2.3
(2)判断下列函数的奇偶性,并说明理由.
①②
③④
(五)归纳小结,整体认识.
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
(六)设置问题,留下悬念.
1.书面作业:课本P46习题A组1.3.9.10题
2.设>0时,
试问:当<0时,的表达式是什么?
解:当<0时,->0,所以,又因为是奇函数,所以

五、课后反思:

文章来源:http://m.jab88.com/j/107752.html

更多

最新更新

更多