一名优秀的教师在教学时都会提前最好准备,作为教师就要精心准备好合适的教案。教案可以让学生们能够更好的找到学习的乐趣,帮助教师提高自己的教学质量。那么如何写好我们的教案呢?下面是小编精心为您整理的“高三数学函数的单调性与奇偶性2”,希望能对您有所帮助,请收藏。
函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.?●案例探究[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)
第十一课时函数的奇偶性(2)
【学习导航】
学习要求
1.熟练掌握判断函数奇偶性的方法;
2.熟练单调性与奇偶性讨论函数的性质;
3.能利用函数的奇偶性和单调性解决一些问题.
【精典范例】
一.函数的单调性和奇偶性结合性质推导:
例1:已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)0,试问:F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论
思维分析:根据函数单调性的定义,可以设x1x20,进而判断:
F(x1)-F(x2)=-=符号解:任取x1,x2∈(-∞,0),且x1x2,则-x1-x20
因为y=f(x)在(0,+∞]上是增函数,且f(x)0,
所以f(-x2)f(-x1)0,①又因为f(x)是奇函数
所以f(-x2)=-f(x2),f(-x1)=f(x1)②
由①②得f(x2)f(x1)0
于是F(x1)-F(x2)=-
所以F(x)=在(-∞,0)上是减函数。
【证明】
设,则,∵在上是增函数,
∴,∵是奇函数,∴,,
∴,∴,∴在上也是增函数.
说明:一般情况下,若要证在区间上单调,就在区间上设.
二.利用函数奇偶性求函数解析式:
例2:已知是定义域为的奇函数,当x0时,f(x)=x|x-2|,求x0时,f(x)的解析式.
解:设x0,则-x0且满足表达式f(x)=x|x-2|
所以f(-x)=-x|-x-2|=-x|x+2|
又f(x)是奇函数,有f(-x)=-f(x)
所以-f(x)=-x|x+2|
所以f(x)=x|x+2|
故当x0时
F(x)表达式为f(x)=x|x+2|.
3:定义在(-2,2)上的奇函数在整个定义域上是减函数,若f(m-1)+f(2m-1)0,
求实数m的取值范围.
解:因为f(m-1)+f(2m-1)0
所以f(m-1)-f(2m-1)
因为f(x)在(-2,2)上奇函数且为减函数
所以f(m-1)f(1-2m)
所以
所以m
追踪训练一
1.设是定义在R上的偶函数,且在[0,+∞)上是减函数,则f(-)与f(a2-a+1)
()的大小关系是(B)
A.f(-)f(a2-a+1)
B.f(-)≥f(a2-a+1)
C.f(-)f(a2-a+1)
D.与a的取值无关
2.定义在上的奇函数,则常数0,0;
3.函数是定义在上的奇函数,且为增函数,若,求实数a的范围。
解:定义域是
即
又
是奇函数
在上是增函数
即
解之得
故a的取值范围是
思维点拔:
一、函数奇偶性与函数单调性关系
若函数是偶函数,则该函数在关于"0"对称的区间上的单调性是相反的,且一般情况下偶函数在定义域上不是单调函数;若函数是奇函数,则该函数在关于"0"对称区间上的点调性是相同的.
追踪训练
1.已知是偶函数,其图象与轴共有四个交点,则方程的所有实数解的和是(C)
420不能确定
2.定义在(-∞,+∞)上的函数满足f(-x)=f(x)且f(x)在(0,+∞)上,则不等式f(a)f(b)等价于(C)
A.abB.ab
C.|a||b|D.0≤ab或ab≥0
3.是奇函数,它在区间(其中)上为增函数,则它在区间上(D)
A.是减函数且有最大值
B.是减函数且有最小值
C.是增函数且有最小值
D.是增函数且有最大值
4已知函数ax7+6x5+cx3+dx+8,且f(-5)=-15,则f(5)=31.
5.定义在实数集上的函数f(x),对任意,有且。
(1)求证;(2)求证:是偶函数。
解(1)令,则有
(2)令,则有
这说明是偶函数
学生质疑
教师释疑
人教版高一数学《函数奇偶性》教案
指对数的运算
一、反思数学符号:“”“”出现的背景
1.数学总是在不断的发明创造中去解决所遇到的问题。
2.方程的根是多少?;
①.这样的数存在却无法写出来?怎么办呢?你怎样向别人介绍一个人?描述出来。
②..那么这个写不出来的数是一个什么样的数呢?怎样描述呢?
①我们发明了新的公认符号“”作为这样数的“标志”的形式.即是一个平方等于三的数.
②推广:则.
③后又常用另一种形式分数指数幂形式
3.方程的根又是多少?①也存在却无法写出来??同样也发明了新的公认符号“”专门作为这样数的标志,的形式.
即是一个2为底结果等于3的数.
②推广:则.
二、指对数运算法则及性质:
1.幂的有关概念:
(1)正整数指数幂:=().(2)零指数幂:).
(3)负整数指数幂:(4)正分数指数幂:
(5)负分数指数幂:(6)0的正分数指数幂等于0,负分指数幂没意义.
2.根式:
(1)如果一个数的n次方等于a,那么这个数叫做a的n次方根.如果,那么x叫做a的次方根,则x=(2)0的任何次方根都是0,记作.(3)式子叫做根式,n叫做根指数,a叫做被开方数.
(4).(5)当n为奇数时,=.(6)当n为偶数时,==.
3.指数幂的运算法则:
(1)=.(2)=.3)=.4)=.
二.对数
1.对数的定义:如果,那么数b叫做以a为底N的对数,记作,其中a叫做,叫做真数.
2.特殊对数:
(1)=;(2)=.(其中
3.对数的换底公式及对数恒等式
(1)=(对数恒等式).(2);(3);(4).
(5)=(6)=.(7)=.(8)=;(9)=
(10)
三、经典体验:
1.化简根式:;;;
2.解方程:;;;;
3.化简求值:
;
4.【徐州六县一区09-10高一期中】16.求函数的定义域。
四、经典例题
例:1画出函数草图:.
练习:1.“等式log3x2=2成立”是“等式log3x=1成立”的▲.必要不充分条件
例:2.若则▲.
练习:1.已知函数求的值▲..
例3:函数f(x)=lg()是(奇、偶)函数。
点拨:
为奇函数。
练习:已知则.
练习:已知则的值等于.
练习:已知定义域为R的函数在是增函数,满足且,求不等式的解集。
例:4解方程.
解:设,则,代入原方程,解得,或(舍去).由,得.经检验知,为原方程的解.
练习:解方程.
练习:解方程.
练习:解方程:.
练习:设,求实数、的值。
解:原方程等价于,显然,我们考虑函数,显然,即是原方程的根.又和都是减函数,故也是减函数.
当时,;当时,,因此,原方程只有一个解.分析:注意到,,故倒数换元可求解.
解:原方程两边同除以,得.设,原方程化为,化简整理,得.,,即..
解析:令,则,∴原方程变形为,解得,。由得,∴,
即,∴,∴。由得,∴,∵,∴此方程无实根。故原方程的解为。评注:将指数方程转化为基本型求解,是解决该类问题的关键。
解析:由题意可得,,,原方程可化为,即。
∴,∴。
∴由非负数的性质得,且,∴,。
评注:通过拆项配方,使问题巧妙获解。
例5:已知关于的方程有实数解,求的取值范围。
已知关于的方程的实数解在区间,求的取值范围。
反思提炼:1.常见的四种指数方程的一般解法
(1)方程的解法:
(2)方程的解法:
(3)方程的解法:
(4)方程的解法:
2.常见的三种对数方程的一般解法
(1)方程的解法:
(2)方程的解法:
(3)方程的解法:
3.方程与函数之间的转化。
4.通过数形结合解决方程有无根的问题。
课后作业:
1.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是
[答案]2n+1-2
[解析]∵y=xn(1-x),∴y′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.
f′(2)=-n2n-1-2n=(-n-2)2n-1.
在点x=2处点的纵坐标为y=-2n.
∴切线方程为y+2n=(-n-2)2n-1(x-2).
令x=0得,y=(n+1)2n,
∴an=(n+1)2n,
∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.
2.在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点M,过点P作的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
解析:设则,过点P作的垂线
,所以,t在上单调增,在单调减,。
文章来源:http://m.jab88.com/j/107752.html
更多