88教案网

高一数学教案:《函数的表示方法》优秀教学设计

高一数学教案:《函数的表示方法》优秀教学设计

教学目标:

1.进一步理解函数的表示方法的多样性,理解分段函数的表示,能根据实际问题列出符合题意的分段函数;

2.能较为准确地作出分段函数的图象;

3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.

教学重点:

分段函数的图象、定义域和值域.

教学过程:

一、问题情境

1.情境.

复习函数的表示方法;

已知A={1,2,3,4},B={1,3,5},试写出从集合A到集合B的两个函数.

2.问题.

函数f(x)=|x|与f(x)=x是同一函数么?区别在什么地方?

二、学生活动

1.画出函数f(x)=|x|的图象;

2.根据实际情况,能准确地写出分段函数的表达式.

三、数学建构

1.分段函数:在定义域内不同的部分上,有不同的解析表达式的函数通常叫做分段函数.

(1)分段函数是一个函数,而不是几个函数;

(2)分段函数的定义域是几部分的并;

(3)定义域的不同部分不能有相交部分;

(4)分段函数的图象可能是一条连续但不平滑的曲线,也可能是由几条曲线共同组成;

(5)分段函数的图象未必是不连续,不连续的图象表示的函数也不一定是分段函数,如反比例函数的图象;

(6)分段函数是生活中最常见的函数.

四、数学运用

1.例题.

例1 某市出租汽车收费标准如下:在3km以内(含3km)路程按起步价7元收费,超过3km以外的路程按2.4元/km收费.试写出收费额关于路程的函数解析式.

例2 如图,梯形OABC各顶点的坐标分别为O(0,0),A(6,0),B(4,2),C(2,2).一条与y轴平行的动直线l从O点开始作平行移动,到A点为止.设直线l与x轴的交点为M,OM=x,记梯形被直线l截得的在l左侧的图形的面积为y.求函数y=f(x)的解析式、定义域、值域.

例3 将函数f(x)= | x+1|+| x-2|表示成分段函数的形式,并画出其图象,根据图象指出函数f(x)的值域.

2.练习:

练习1:课本35页第7题,36页第9题.

(3)试比较函数f(x)=|x+1|+|x|与g(x)=|2x+1|是否为同一函数.

(4)定义[x]表示不大于x的最大整数,试作出函数f(x)=[x] (x∈[-1,3))的图象.并将其表示成分段函数.

练习3:如图,点P在边长为2的正方形边上按A→B→C→D→A的方向移动,试将AP表示成移动的距离x的函数.

五、回顾小结

分段函数的表示→分段函数的定义域→分段函数的图象;

含绝对值的函数常与分段函数有关;

利用对称变换构造函数的图象.

六、作业

课堂作业:课本35页习题第3题,36页第10,12题;

课后探究:已知函数f(x)=2x-1(x∈R),试作出函数f(|x|),|f(x)|的图象.

延伸阅读

高一数学函数的表示方法教案28


课题:函数的表示方法
教学目标
能熟练掌握函数的三种不同表示,了解函数不同表示法的优缺点。了解分段
函数。
教学重点
函数的三种不同表示的相互间转化。
教学难点
函数的解析式的表示,理解和表示分段函数。
教学过程
一.问题情景
课本第21页上三个函数问题在表示方法上有什么区别?
二.学生活动
问题1:观察三个函数问题,你能说出各种函数表现形式上的各自特点吗?
三.建构数学
问题2:如何用数学语言来准确地表述函数表示法?

问题3:你能说出几种函数表示法的各自优缺点吗?

四.数学运用
1.例题
例1.下面哪些等式是函数的解析式?
(1)y=x.(2)f(x)=|x|
x,x≥0
(3)f(x)=
x,x0

例2.购买某种饮料x听,所需钱数为y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数,并指出该函数的值域.

例2.画出函数f(x)=|x|的图象,并求f(-3),f(3),f(-1),f(1)的值.

例3.某市出租汽车收费标准如下:在3km(含3km)按起步价7元收费,超过3km的路程按规定.2.4元/km.试写出收费额关于路程的函数解析式.

2.练习:
第31页练习第1,4题.
3.回题下列问题:
(1)任何一个函数都可以用列表法表示吗?

(2)任何一个函数的解析式都存在吗?

(3)一个函数的图象一定是孤立的点吗?一定是曲线吗?一定是一段曲线吗?一个函数的图象一定与直线x=a相交吗?

五.回顾小结:
本节课研究了函数的表示法,求函数的表达式即函数的解析式是研究函数的基本要求,也是重点.其中要注意定义域的限制.
六.课外作业
第31页练习第2,3题.
第32页习题2.1(2)第1,2,3,6题.

高一数学教案:《对数函数》优秀教学设计(一)


高一数学教案:《对数函数》优秀教学设计(一)

教学目标:

1.掌握对数函数的概念,熟悉对数函数的图象和性质;

2.通过观察对数函数的图象,发现并归纳对数函数的性质;

3.培养学生数形结合的思想以及分析推理的能力.

教学重点:

理解对数函数的定义,初步掌握对数函数的图象和性质.

教学难点:

底数a对图象的影响及对对数函数性质的作用.

教学过程:

一、问题情境

在细胞分裂问题中,细胞个数y是分裂次数 x的指数函数y=2x.因此,知道x的值(输入值是分裂的次数),就能求出y的值(输出值是细胞个数).

反之,知道了细胞个数y,如何确定分裂次数 x? x=log2 y.

在这里,x与y之间是否存在函数的关系呢?

同样地,前面提到的放射性物质,经过的时间x(年)与物质的剩余量y的关系为y=0.84 x.反之,写成对数式为x=log0.84 y.

二、学生活动

1.回顾指数与对数的关系;引出对数函数的定义,给出对数函数的定义域

2.通过观察对数函数的图象,发现并归纳对数函数的性质.

3.类比指数函数的定义、图象、性质得到对数函数的定义、图象、性质.

三、建构数学

1.对数函数的定义:一般地,当a>0且a≠1时,函数y=logax叫做对数函数,自变量是x;函数的定义域是(0,+∞).

值域:R.

2.对数函数y = logax (a>0且a≠1)的图像特征和性质.

a

a>1

0<a<1

图像

定义域

值域

(1)恒过定点:

(2)当x>1时,

当0<x<1时,

当x>1时,

当0<x<1时,

(3)在上是函数

在上是函数

3.对数函数y = logax (a>0且a≠1)与指数函数y =ax (a>0且a≠1)的关系——互为反函数.

四、数学运用

例2 比较大小:

(1); (2);(3).

2.练习:

课本P85-1,2,3,4.

五、要点归纳与方法小结

(1)对数函数的概念、图象和性质;

(2)求定义域;

(3)利用单调性比较大小.

六、作业

课本 P87习题2,3,4.

高一数学教案:《指数函数》优秀教学设计(一)


高一数学教案:《指数函数》优秀教学设计(一)

教学目标:

1.掌握指数函数的概念(能理解对a的限定以及自变量的取值可推广至实数范围),会作指数函数的图象;

2.能归纳出指数函数的几个基本性质,并通过由指数函数的图像归纳其性质的学习过程,培养学生探究、归纳分析问题的能力.

教学重点:

指数函数的定义、图象和性质.

教学难点:

指数函数性质的归纳.

教学过程:

一、创设情境

课本第59页的细胞分裂问题和第64页的古莲子中的14C的衰变问题.

二、学生活动

(1)阅读课本64页内容;

(2)动手画函数的图象.

三、数学建构

1.指数函数的概念:一般地,函数y=ax(a>0且a≠1)叫做指数函数,它的定义域是R,值域为(0,+).

练习:

(1)观察并指出函数y=x2与函数y=2x有什么区别?

(2)指出函数y=2·3x,y=2x+3,y=32x,y=4?x,y=a?x(a>0,且a≠1)中哪些是指数函数,哪些不是,为什么?

思考:为什么要强调a>0,且a≠1?a≠1自然将所有的正数分为两部分

(0,1)和(1,+),这两个区间对函数的性质会有什么影响呢?

2.指数函数的图象和性质.

五、小结

1.指数函数的定义(研究了对a的限定以及定义域和值域).

2.指数函数的图象.

3.指数函数的性质:

(1)定点:(0,1);

(2)单调性:a>1,单调增;0<a<1,单调减.

六、作业

课本P70习题3.1(2)5,7.

高一数学教案:《集合的表示》教学设计


高一数学教案:《集合的表示》教学设计

教学目标:

(1)了解集合的表示方法;

(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

教学重点:掌握集合的表示方法;

教学难点:选择恰当的表示方法;

教学过程:

一、复习回顾:

1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

二、新课教学

(一).集合的表示方法

通过以上的学习,我们知道可以大写的拉丁字母表示集合,也可以用“自然语言”来描述一个集合,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:“地球上的四大洋”可以表示为{太平洋,大西洋,印度洋,北冰洋};

“方程的所有实数”根组成的集合可以表示成{1,2};…;

说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

2.各个元素之间要用逗号隔开;

3.元素不能重复;

4.集合中的元素可以数,点,代数式等;

5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为

例1.(课本例1)用列举法表示下列集合:

(1)小于10的所有自然数组成的集合;

(2)方程x2=x的所有实数根组成的集合;

(3)由1到20以内的所有质数组成的集合;

文章来源://m.jab88.com/j/107664.html

更多

猜你喜欢

更多

最新更新

更多