老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“中考数学二轮专题复习:数形结合思想”,供您参考,希望能够帮助到大家。
中考数学专题复习之五:数形结合思想
在数学问题中,数量关系与图形位置关系这两者之间有着紧密却又较隐含的相互关系。解题时,往往需要揭示它们之间的内在联系,通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。
【范例讲析】:
例1:二次函数y=ax2+bx+c的图象如图所示,根据图象,
化简
例2:(嘉峪关)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:
(1)求y1与y2的函数解析式;
(2)解释图中表示的两种方案是如何付推销费的?
(3)果你是推销员,应如何选择付费方案?
【闯关夺冠】
1.实数a、b上在数轴上对应位置如图3-3-6所示,则等于()
A.aB.a-2bC.-aD.b-a
2.已知抛物线如图所示,则下列结论:①c=1;
②a+b+c=0;③a-b+c0;④b2-4ac0,其中正确的个数是()
A.1B.2C.3D.4
3.如图,点A,D,G,M在半圆O上,四边型ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是()
A.abcB.a=b=cC.cabD.bca
每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。需要我们认真规划教案课件工作计划,这样我们接下来的工作才会更加好!你们会写适合教案课件的范文吗?请您阅读小编辑为您编辑整理的《中考数学二轮专题复习:找规律》,欢迎大家阅读,希望对大家有所帮助。
中考数学专题复习之十四找规律
1.如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有个.
2.已知:,,,…,
观察上面的计算过程,寻找规律并计算.
3.(中山)如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去,则正方形A4B4C4D4的面积为__________。
4.(杭州)给出下列命题:
命题1.点(1,1)是直线y=x与双曲线y=的一个交点;
命题2.点(2,4)是直线y=2x与双曲线y=的一个交点;
命题3.点(3,9)是直线y=3x与双曲线y=的一个交点;
…….
(1)请观察上面命题,猜想出命题(是正整数);
(2)证明你猜想的命题n是正确的.
5.(连云港)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为34,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出34+342+343+…+34n=________.
学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容《中考数学二轮专题复习:信息型题》,仅供参考,欢迎大家阅读。
中考数学专题复习之八:信息型题
所谓信息型题就是根据文字、图象、图表等给出数据信息,进而依据这些给出的信息通过整理、分析、加工、处理等手段解决的一类实际问题
【范例讲析】:
例1:某开发区为改善居民的住房条件,每年都新建一批住房,人均住房面积逐年增加。(人均住房面积=该区住房总面积/该区人口总数,单位:m2/人),该开发区2003~2005年,每年年底人口总数和人均住房面积的统计结果分别如下图:请根据两图所所提供的信息,解答下面的问题:
⑴该区2004年和2005年两年中,哪一年比上一年增加的住房面积多?增加多少万m2?
⑵由于经济发展需要,预计到2007年底,该区人口总数比2005年底增加2万,为使到2007年底该区人均住房面积达到11m2/人,试求2006年和2007年这两年该区住房总面积的年平均增加率应达到百分之几?
【闯关夺冠】
如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图像(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图像回答或解决下面的问题:
(1)谁出发的较早?早多长时间?谁到到达乙地较早?早到多少时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);
(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要化简,也不要求解):
①自行车行驶在摩托车前面;
②自行车与摩托车相遇;
③自行车行驶在摩托车后面.
文章来源:http://m.jab88.com/j/75611.html
更多