教案课件是老师需要精心准备的,大家在仔细设想教案课件了。只有写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写一段优秀的教案课件吗?下面是小编为大家整理的“《图形变换的简单应用》教材分析湘教版”,供大家参考,希望能帮助到有需要的朋友。
《图形变换的简单应用》教材分析湘教版
图形变换的简单应用
教学目标
1.轴对称变换和旋转变换的概念和性质及应用。
2.运用图形变换设计、制作图案,图象的周长和面积计算,应用图形变换的知识解决一些实际生活问题。通过观察和实验,培养学生的抽象思维和空间想象能力逐步培养学生的各种数学思想。
3.结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。能够自主探索,与同学进行交流合作,能够使用数学语言有条理地表达自己解决问题的过程。
教学重难点
教学重点:轴对称变换和旋转变换在图案设计、图象的面积计算等方面的应用。
教学难点:运用图形变换设计、制作图案,不仅需要熟练掌握各种图形变换的概念和性质,还需要有丰富的想象力和创造性,是本节教学的难点;能把一些实际生活问题通过学习图形变换的知识转化为数学问题,从尔解决实际生活问题,将是部分同学更高层次的应用和目标。
教学准备
多媒体辅助课件,投影仪,学生自己搜集的图形,图案等。
教学前先布置一个课前任务:每位学生收集一些通过图形变换后形成的各种生活中的实际图形,以小组的形式每组推荐一幅学生认为最具代表性的图案准备上课出示。
目的是让学生初步学会应用轴对称变换、平移变换、和旋转变换的概念,充分发挥学生丰富的想象力和创造性,培养学生观察生活能力,团队协作精神,体现新课程学以致用的基本理念。
教学过程
一、生活中的图形变换
1、引入如图的图案,师生共同探究图案中的图形变换。
设问分析:由哪些基本图形组成?主体图形是什么?运用了哪些图形变换?是怎样变换的?
目的是复习轴对称变换、平移变换、和旋转变换的概念,教会学生怎样观察图象,怎样分析图象中的图形变换。然后投影仪演示这些概念。
2、展示学生收集的作品,教师经筛选现场出示两幅具有代表性的图案
引导学生观察、比较,再由选中的两组代表表述:由哪些基本图形组成?主体图形是什么?运用了哪些图形变换?是怎样变换的?
其他的学生纠正错误点,补充缺漏点。目的是培养学生的观察力,分析能力,数学语言的表达能力,也给学生一定的成就感。
3、学生教学反思:应用了图形变换的哪些性质,怎样来分析图形变换:由哪些基本图形组成?主体图形是什么?运用了哪些图形变换?是怎样变换的?然后投影仪演示这些性质和方法。
目的是教会学生分析图象中的图形变换。
4、学生小组再次合作,利用简单图形和图形变换,设计一幅图案。简单展示一下。
目的是知识的延伸和实际应用。
5、教师展示自己收集的几幅比较漂亮的图案,再次激发学生的学习兴趣。
总结:这一部分内容主要是落实重点,而且学生的可塑性和不确定性比较大,教师要进行适当合理的调控,
时间控制为20分钟左右。
二、数学中应用图形变换
图形变换的思想还可以用来帮助进行有关图形的计算和判断。
1、如图是一个轴对称图形(不考虑颜色),直线l是它的一条对称轴。已知图中圆的半径为r,求绿色部分的面积。
2、分别以三角形ABC的三边作等边三角形.请问:(1)DC、AE的大小关系如何?(2)三角形是通过哪个三角形怎样平移得到的?(3)四边形DBEF的形状如何?(4)选中点B或C随意移动,注意观察上述结论是否成立?
总结:这一部分内容主要是突破难点,教师应引导学生探索学习,促进学生主动发展,教师要重分析,讲思路。
三、回顾小结
1、图形变换应用了哪些变换思想?
2、怎样观察图形变换?
3、学习了哪些数学研究方法?
湘教版九年级上册数学导学案
5.2统计的简单应用(2)
【学习目标】
1.熟悉统计的基本步骤,会调查.收集.统计.分析数据.
2.会用各种图表表示统计结果.
3.渗透数学来源于生活又服务于生活观点,培养学生用数学的意识.
重点:熟悉统计的基本步骤,会调查.收集.统计.分析数据.
难点:会用各种图表表示统计结果.
【预习导学】
一.知识链接
学生通过自主预习教材P149-P151完成下列问题.
统计的基本步骤有哪些?
【探究展示】
(一)合作探究
李奶奶在小区开了一家便利店,供应A,B,C,D,E5个品种的食物.由于不同品种的食物的保质期不同,因此,有些品种因滞销而变质,造成浪费,有些品种因脱销而给居民带来不便.面对这种情况,李奶奶很着急.
请你想办法帮助李奶奶解决这一问题.
随机抽取几天中这5个品种食物的销售情况,再根据结果提出合理建议.
(1)调查和收集资料.
先随机统计两周中5个品种食物的每天销售量(结果如下表).
星
期
日星
期
一星
期
二星
期
三星
期
四星
期
五星
期
六星
期
日星
期
一星
期
二星
期
三星
期
四星
期
五星
期
六
A4940434047434050424544434548
B4335403737373530334434353540
C4035364145454045474343433645
D2830233026252730282528282626
E1620242525242025291520221618
(2)分周统计每个品种的销售情况
ABCDE
第一周
第二周
两周销售量之差
(3)分析统计结果.
从上面的统计表中,可以发现每个品种每周的销售量虽然有时多,有时少,但变化不大.这说明这个小区的需求量是很稳定的,但不同品种的销售量有很大区别,故只需按适当的比例进货,就能既不会因滞销造成浪费,也不会因脱销而给居民带来不便.
(4)确定进货方案.
品种ABCDE
周平均销量309.5257.5292190149.5
按照适当的比例购进商品时,需考虑销售量时有波动的影响,因此应先计算各品种的周平均销量(结果如下表).
于是,可以建议李奶奶按的比例购进A.B.C.D.E这5种食物.
(二)展示提升
下表是2006—2011年全国城镇居民人均可支配收入(单位:元)统计表:
年份200620072008200920102011
人均可支配收入117591378915781171751910921810
(1)根据上表数据,以年份为横坐标,以人均可支配收入为纵坐标,建立直角坐标系,并在该坐标系中描出坐标(年份,人均可支配收入);
(2)试用直线表示全国城镇居民人均可支配收入在近几年内的发展趋势.
【知识梳理】
本节课我们学到了什么?
【当堂检测】
1.某工厂需要A,B,C三种原料用于生产,为了合理进料以维持正常生产,工厂随机统计了两周中每天原料消耗(单位:t)的情况:
星
期
日星
期
一星
期
二星
期
三星
期
四星
期
五星
期
六星
期
日星
期
一星
期
二星
期
三星
期
四星
期
五星
期
六
A3225262630282728252530242630
B1815121017201016161020111211
C1416141215151116131714161514
2.下表是我国2006—2010年第一产业在国民生产总值中的比例数据:
年份20062007200820092010
比例(%)11.311.111.310.310.1
(1)请根据表中数据,建立直角坐标系,并描出坐标(年份,第一产业在国民生产总值中的比例);
(2)试用直线表示第一产业在我国国民生产总值中的比例在近几年内的发展趋势.
【学后反思】
通过本节课的学习,
1.你学到了什么?
2.你还有什么样的困惑?
3.你对自己本节课的表现满意的地方在哪儿?哪些地方还需改进?
湘教版九年级上册数学导学案
5.2统计的简单应用(1)
【学习目标】
1.理解率的定义,会计算生活生产实践中的率,会用简单随机样本中的率来估计总体的率.
2.熟悉抽样统计的全过程,并善于处理统计的数据.
3.渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.
重点:会计算生活生产实践中的率,会用简单随机样本中的率来估计总体的率.
难点:收集.整理并处理数据.
【预习导学】
学生通过自主预习教材P146-P148完成下列问题.
1.什么叫做率?
2.生活中常用的率有哪些?怎样计算?
【探究展示】
(一)合作探究
说一说;“某工厂生产了一批产品,从中随机抽取1000件来检查,发现有10件次品,试估计这片产品中的次品率.”的解决方法.
分析;这次研究的总体是________,样本是_______,要求的是_____的次品率,我们解决的方法是__________
(二)展示提升
出示P146的“动脑筋”——某地为提倡节约用水,准备实行“阶梯水价计费”方式,用户月用水量不超过基本月用水量的部分享受基本价格超过基本月用水量的部分实行加价收费,为了更好地决策.自来水公司随机抽取了部分用户的月用水量数据,并将这些数据制成了如图所示的统计图(每组数据包括右端点但不包括左端点).
如果自来水公司将基本月用水量定为每户每月12t,那么该地20万用户中约有多少用户能够全部享受基本价格?
下表给出了某校500名12岁男孩中用随机抽样得出的100人的身高h的分组数据(单位:cm):
范围122≤h<126126≤h<130130≤h<134134≤h<138138≤h<142
人数4781828
范围142≤h<146146≤h<150150≤h<154154≤h<158
人数17954
(1)列出样本频率分布表;
分组频数频率
122≤h<12640.04
126≤h<13070.07
130≤h<13480.08
134≤h<138180.18
138≤h<142280.28
142≤h<146170.17
146≤h<15090.09
150≤h<15450.05
154≤h<15840.04
合计1001
估计该校500名12岁男孩中身高小于134cm的人数.
【知识梳理】
本节课我们学到了什么?
1.“率”的计算:
2.可以用样本的“率”,去估计总体的。
【当堂检测】
1.某市教育局为了解该市5万名九年级学生的身体素质情况,随机抽取了1000名九年级学生进行检测.已知被检测学生的身体素质达标率为95%,请据此估计该市九年级学生中身体素质达标的学生人数.
2.为了让学生了解环保知识,增强环保意识,某市在中学生中举行了一次“环保知识竞赛”,共有19000名中学生参加了这次竞赛.为了解本次竞赛成绩情况,从中随机抽取了500名学生的成绩x(得分均为整数,满分为100分)进行统计后得到下表.
请根据表格解答下列问题:
分组频数频率
51≤x<61400.08
61≤x<710.16
71≤x<81100
81≤x<911600.32
91≤x<101
合计500
(1)补全表格;
(2)假设成绩在71分至90分之间(含71分,90分)的学生为二等奖,请据此估计该市获得二等奖的学生人数.
【学后反思】
通过本节课的学习,
1.你学到了什么?
2.你还有什么样的困惑?
3.你对自己本节课的表现满意的地方在哪儿?哪些地方还需改进?
文章来源://m.jab88.com/j/31279.html
更多