88教案网

应用一元一次方程——“希望工程”义演导学案

每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“应用一元一次方程——“希望工程”义演导学案”,希望能为您提供更多的参考。

科目
数学课题5.5应用一元一次方程——“希望工程”义演
主备人王富军审核人学案类型新授学案编号5008
学习
目标1.会借助表格分析复杂问题中的数量关系,建立方程解决实际问题。
2.归纳利用方程解决实际问题的一般步骤。
重难点重点能在具体问题中准确找出等量关系列方程并求解
难点能在具体问题中准确找出等量关系列方程并求解
自主学习合作交流一、自主学习:
某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票是每张8元,学生票是每张5元,筹得票款6950元。问成人票与学生票各售出多少张?上面的问题中包括哪些量?
售出的票包括________________票和__________________票;
所得票款包括________________款和_________________款;
上面的问题中包括哪些等量关系?
(I)_____________________+_____________________=1000张
(2)_____________________+______________________=6950元
解法一:设售出的成人票为x张,请填写下表:
学生成人
票数(张)
票款(元)
根据等量关系(2),可以列出方程:____________________________
解得x=____________
因此,售出的成人票为___________张,学生票为___________张。
学生成人
票数(张)
票款(元)
解法二:设所得的学生票款为y元,请填写下表:
根据等量关系(1),可以列出方程:_________________________
解得y=____________
因此,售出的成人票为___________张,学生票为___________张。
变式训练:如果票价不变,那么售出1000张票所得的票款可能是6930元吗?学法指导
要分清各个量之间的关系。

分析清楚各个数据代表的实际含义。JAb88.cOM

总票数=成人总票数+学生总票数

总票款=成人票款×成人票价+学生票款×学生票价

票数=总票款÷票价.
合作探究展示交流练习:1、甲、乙两班共90人,期中考试后,由甲班转入乙班4人,这时甲班人数是乙班人数的80%,问期中考试前两班各有多少人?

2、某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用24天,印完全套书共用了多少天?
自我检测一、填空题:
1.某校七年级举行数学竞赛,80人参加,总平均成绩63分,及格学生平均成绩为72分,不及格学生平均48分,问及格学生有多少人?
(分析等量关系为:及格学生总分+不及格学生总分=80×63)
2.某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?
(分析等量关系为:第二组人数+第一组人数=100)
.
1.一批宿舍,若每间住1人,有10人无处住,若每间住3人,则有10间无人住,那么这批宿舍有多少间,人有多少个

2.师生共100人去植树,教师每人栽2棵树,学生平均每2人栽1棵树,一共栽了110棵,问教师和学生各有多少人?

课后
作业1.习题5.51.23
2.配套练习67页练习五

相关阅读

一元一次方程导学案


老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“一元一次方程导学案”,欢迎阅读,希望您能够喜欢并分享!

丽星中学八年级数学导学案设计小组负责人:小组长:年月日
预习笔记课题:从实际问题到方程可以用尝试、检验的方法找出方程②的解,即只要将x=1,2,3,4,5,…代入方程②的左右两边,看哪个数能使两边的值相等.
这样得到x=是方程的解.
【三】分组合作
1、练习:检验下列各括号内的数是不是它前面方程的解
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)44x+64=328(x=5,x=6)

2、根据题意设未知数,并列出方程(不必求解):
(1)、某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?

(2)、小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本利和为3243元.请你帮小明算一算这种储蓄的年利率.

3、检验下列方程后面大括号内所列各数是否为相应方程的解:
(2)2(y-2)-9(1-y)=3(4y-1),{-10,10}.
4、小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了1.60元.你猜原来每本价格是多少?”你能列出方程吗?

预习笔记
学习目标1、使学生会列一元一次方程
2、会判断一个数是不是某个方程的解
重点:会列一元一次方程解决一些简单的应用题
难点:列一元一次方程

思考题:
5x-1=2x+7(x=?)
如果未知数可能取到的数值较多,或
者不一定是整数,该从何试起?如果
试验根本无法入手又该怎么办?

【一】预习交流。
1、列出下列代数式
(1)一本笔记本1.2元,x本需要________钱。
(2)一支铅笔a元,一支钢笔b元,小强买2支铅笔和
3支钢笔一共需要____________元钱。
(3)长方形的宽为a,长比宽长3,则该长方形的面积为___________.
(4)x辆44座的汽车加上2辆32座的汽车最多可以乘坐________人。
2、引入(回顾小学学习的列方程解应用题)
一本笔记本1.2元,小红有6元钱,那么她最多能买到几本这样的笔记本?

【二】明确目标。
1、某校初一级师生共328人,乘车外出旅游,已有2辆校车可乘坐64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?
分析:设需租用客车辆,共可乘坐人,
加上乘坐校车的64人,就是全体328人.可得
你会解这个方程吗?试一试

2、在2.课外活动中,数学老师发现同学们的年龄大多是13岁.就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
设x年后同学的年龄是老师年龄的,而x年后同学的年龄是岁,
老师的年龄是(45+x)岁,可得
.
如何求方程②的解.

预习笔记附页预习笔记
【三】展现提升。
一选择
1、下列方程解为12的是()
A3x+2B2x+1=0C12x=2D12x=14
2、下列说法不正确的个数是()
①等式都是方程;②方程都是等式;③不是方程的就不是等式;④未知数的值就是方程的解
A3个B2个C1个D0个
3、x=-2是方程x+a=5的解,则a的值是()
A7B1C-1D-7
4、下列式子中:①3x+5y=0②x=0③3x2-2x④5x7⑤x2+1=4⑥x5+2=3x是方程的有()个
A1B2C3D4
6、下列说法正确的是()
Ax=-6是x-6的解Bx=5是3x+15的解
Cx=-1是-x4=4的解Dx=0.04是25x=1的解
7、在代数式x3-ax中,当x=-2时值为4,则a的值为()
A6B-6C2D-2
8、下列各式方程后面括号里的数是该方程的解的是()
A3x+4=-13{-4}B23x-1=5{9}
C6-2x=113{-1}D5-y=-16{23}
二填空
1、数值-1,-2,0,1,2中,方程3x+3=x+1的解是.
2、3个连续奇数的和是21,设最大的奇数为y,则可列方程为.
3、根据下列条件列方程:
(1)某数的3倍比它的2倍小1,设某数为x,则可列出方程.
(2)x与3的差的2倍等于x的13:.
(3)某仓库存放面粉x千克,运出25%后,还剩余300千克:
4、当x=2时,代数式ax-2的值是4,那么当x=-2时,这个代数式的值为.
5、甲班有32人,乙班有28人,如果要使甲班人数是乙班人数的2倍,那么需要从乙班调多少人到甲班?若设从乙班抽调x人到甲班,则可列方程为.
6、任写一个以x=2为解的方程,可以是.
三、根据题意,只列方程,不必求解
(1)某校初一年级组织学生去科技馆参观,共租用9辆大客车,每辆车有座位60个,老师共去20人,若该年级的男生比女生多30人,刚好每人都有座位,则该校女生有多少人?
(2)某工厂三天共运出货物60箱,第一天运出20箱,第二天运出第一天的12,问第三天运出多少箱?

应用一元一次方程——追赶小明


每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“应用一元一次方程——追赶小明”但愿对您的学习工作带来帮助。

6应用一元一次方程——追赶小明

1.行程问题中的基本关系式
行程问题是在匀速运动的条件下,所有研究物体运动的路程、速度和时间,及运动状态的问题的统称.
行程问题中路程、速度和时间三个量之间的关系
①路程=速度×时间;
②速度=路程时间;
③时间=路程速度.
【例1】一列火车从车头进隧洞到车尾出隧洞共用了10分钟,已知火车的速度是500米/分,隧洞长为4800米,问这列火车长是多少米?
分析:隧洞用AB表示,火车用CD表示,画出示意图如图所示.设火车长为x米,从图中易见:火车从进洞前的D点行驶到出洞后的D点,共行驶了(4800+x)米,用了10分钟,然后根据“4800+x=火车的速度×10”列出方程求解.
解:设火车长为x米,依题意,得4800+x=500×10.
解得x=200.
答:这列火车长是200米.
2.相遇问题的解决方法
相遇问题是比较重要的行程问题,其特点是相向而行.如图1就是相遇问题.图2也可看成相遇问题来解决.
相遇问题中的相等关系
①甲、乙的速度和×相遇时间=总路程;
②甲行的路程+乙行的路程=总路程,即s甲+s乙=s总;
③甲用的时间=乙用的时间.
________________________________________________________
________________________________________________________
________________________________________________________
________________________________________________________
________________________________________________________
【例2】A,B两地间的路程为360千米,甲车从A地出发开往B地,每小时行驶72千米.甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米.
(1)几小时后两车相遇?
(2)两车相遇后,各自仍按原速度和原方向继续行驶.那么相遇以后两车相距100千米时,甲车从出发共行驶了多少小时?
分析:(1)本小题属于相遇问题.相等关系是:甲车的行程+乙车的行程=360千米.
(2)相等关系是:甲车行驶的路程+乙车行驶的路程=(360+100)千米.
解:(1)设经过x小时两车相遇,则据题意,得722560+x+48x=360.解得x=234.
答:234小时后两车相遇.
(2)设相遇以后两车相距100千米时,甲车共行驶了x小时,则乙车共行驶了x-2560小时,由题意可知,甲车行驶的路程是72x千米,乙车行驶的路程是48x-2560千米.
根据题意,得72x+48x-2560=360+100.
解这个方程,得x=4.
答:甲车共行驶了4小时.,3.追及问题的解决方法
追及问题的特点是同向而行.追及问题有两类:
①同时不同地,如下图:
等量关系:乙的行程-甲的行程=行程差;速度差×追及时间=追及距离.即s乙-s甲=s差.甲用的时间=乙用的时间.
②同地不同时,如下图:
等量关系:甲的行程=乙的行程.即s甲=s乙.
“同时不同地”中,双方行驶所用的时间相同,行驶的路程却不同(出发点不同);而“同地不同时”中,由于行驶双方出发时间有先后,故行驶过程中用的时间不同,双方出发地相同,故行驶的路程相同.
【例3-1】李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑7.5米,同时起跑,问王亮跑多少米可以追上李成?
分析:本题是追及问题,属于“同时不同地”的类型,可根据“王亮跑的路程-李成跑的路程=10米”,列方程求解.
解:设x秒时王亮追上李成,根据题意,得7.5x-7x=10.解得x=20.
所以7.5×20=150(米).
答:王亮跑150米可追上李成.
【例3-2】甲、乙两人从同地出发前往某地.甲步行,每小时行6千米,先出发1.5小时后,乙骑自行车出发,又过了50分钟,两人同时到达目的地,问乙每小时行多少千米?
分析:本题是“同地不同时”的追及问题,可画出线段图帮助解答.
本题的相等关系是:甲行驶的路程=乙行驶的路程.
解:设乙每小时行x千米,根据题意,得5060x=61.5+5060.
解这个方程,得x=16.8.
答:乙每小时行16.8千米.
4.航行(飞行)问题与环行问题
(1)航行(飞行)是指轮船的航行或飞机的飞行,也属于行程问题.
航行问题中的基本概念:
①静水速度:轮船在不流动的水中行驶的速度;②顺水速度:轮船顺着水流的方向航行的速度;③逆水速度:轮船行驶方向与水流的方向相反时的航行速度;④水速:水自身流动的速度.
航行或飞行中会受到水速或风速的影响,因此此类问题的基本关系是:①顺水速=静水速+水速,顺风速=无风速+风速;②逆水速=静水速-水速,逆风速=无风速-风速.
(2)环行问题
环行问题即沿环行路的行程问题,有以下两种情况:
①甲、乙两人在环形道上同时同地同向出发:快的必须多跑一圈才能追上慢的.即快者走的路程=慢者走的路程+一圈的路程.
②甲、乙两人在环形道上同时同地反向出发:两人首次相遇时的总路程为环形道的一圈长.即甲走的路程+乙走的路程=一圈的路程.
【例4-1】一名极限运动员在静水中的划船速度为12千米/时,今往返于某河,逆流时用了10时,顺流时用了6时,求此河的水流速度.
分析:逆水速=静水速-水速,顺水速=静水速+水速,顺流行程=逆流行程.
解:设此河的水流速度为x千米/时,根据题意,得6(12+x)=10(12-x),解这个方程,得x=3.
答:此河的水流速度为3千米/时.
【例4-2】甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒跑6米,甲每秒跑8米.
(1)如果甲、乙两人在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?
(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?
分析:(1)属于相遇问题,相等关系:甲的行程+乙的行程=环形跑道一圈的长-8米;(2)属于追及问题,相等关系:甲走的路程=乙走的路程+两地间的距离-8米.
解:(1)设经过x秒,甲、乙两人首次相遇.
根据题意得8x+6x=400-8,
解这个方程,得x=28.
答:经过28秒两人首次相遇.
(2)设经过x秒,甲、乙两人首次相遇,
根据题意得8x=6x+400-8,
解这个方程,得x=196.
答:经过196秒两个人首次相遇.

一元一次方程


每个老师为了上好课需要写教案课件,大家应该开始写教案课件了。教案课件工作计划写好了之后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“一元一次方程”,大家不妨来参考。希望您能喜欢!

第6章一元一次方程测试题
姓名班级分数
一、填空题(每题3分,共30分)
1、如果,那么(根据)。
2、7与x的差的比x的3倍小6的方程是
3、若方程是关于X的一元一次方程,则k=
4、当X=时,代数式3(x-2)与2(2+x)的值相等
5、已知长方形的周长为40cm、长为xcm、宽为8cm,由题意列方程为
6、要将方程的分母去掉,在方程的两边最好同时
乘以
7、当x=时,代数式的值为0.
8、某商店老板将一件进价为800元的商品先提价50%;再打8折出销,则出销这件商品所获利润是元。
9、一件工作,甲队单独做12天可以完成,乙队单独做18天可以完成,若两队合做则天可以完成。
10、某省今年高考招生17万人,比去年增加了18%,设该省去年招生x万人,则可以列方程。
二、选择题(每题3分,共30分)
1、方程2x+1=0的解是()
(A)(B)(C)2(D)--2
2、已知下列方程中①、②0.3x=1、③、④
⑤x=6、⑥x+2y=0、⑦,其中是一元一次方程的有()
(A)2个(B)3个(C)4个(D)5个
3、如果方程是一个关于x的一元一次方程,那么m的取值范围是()
(A)(B)(C)m=--1(D)m=0
4、方程2(x—7)=x+4的解是()
(A)x=--5(B)x=5(C)x=14(D)x=18
5、对于等式,下列变形正确的是()
(A)(B)(C)(D)
6、下列等式变形错误的是()
(A)由a=b,得a+5=b+5(B)由a=b,得
(C)由x+2=y+2,得x=y(D)由-3x=-3y,得x=-y
7、方程的解是()
(A)x=3(B)(C)(D)x=-3
8、将方程去括号后正确的是()
(A)(B)
(C)(D)14x-1-12x+3=11
9、方程的解是()
(A)(B)(C)(D)
10、某工人计划每生产a个零件,现在实际每天生产b个零件,则生产m个零件提前的天数为()
(A)(B)(C)(D)
三、解答题(共40分)
1、解方程:(5分)

2、解方程:(5分)

3、解方程:(5分)
4、用一根直径为16cm的圆柱形铅柱,锻造5个直径为16cm铅球,问应裁取多长的铅柱?(球的体积为)(7分)

5、为了促进销售,某商场将一种商品按标价的9折出售,仍可获利10%,若该商品的标价是33元,则该商品的进价是多少元?

6、甲、乙两站间的路程为35千米,一辆慢车从甲站开往乙站,走了一个半小时后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇?(10分)

文章来源:http://m.jab88.com/j/25559.html

更多

最新更新

更多