88教案网

乘法分配律教案

乘法分配律教案模板6篇。

对于新入职的老师而言,教案课件还是很重要的,又到了写教案课件的时候了。要知道高效教学水平可以体现在老师写的教案课件里面。那撰写教案时需要考虑的几大因素?你不妨看看乘法分配律教案模板6篇,如果合你所需,不妨马上收藏本页。

乘法分配律教案(篇1)

下头,我就《乘法分配律》一课,谈一谈我的设计理念及设计意图。 第一部分:导入部分

引入数学家波利亚的话:“学习任何知识的最佳途径,都是由自我去发现、探索、研究,这样理解更深刻。”其设计意图是,激发孩子们求知的、探索的欲望,为新课的学习创设情境。

环节一:尝试性练习(课件出示的那两道练习题),试用两种方法解题,能够小组讨论,然后派代表发言。

设计意图:数学知识源于生活,又服务于生活。实践证明,补充实例,让学生试探,比直接出示例三更有利于集中注意力解题,突出算式特点,进而为理解乘法分配律的生成过程与变成特做铺垫,有利于突破教学难点。

环节二:教学例3,提出问题——看主题图找已知条件——口述编题——解决问题——梳理算法——发现规律。

设计意图:引领学生观察上头每组算式的结构特点,并经过比较——三组不一样的算式的结果相同,证明三个算式有相等关系——让学生历经确定与归纳推理的过程,进而发现、总结一般规律:左边是两个数的和同一个数相乘,右边是这两个加数分别同这个数相乘,再把积相加,结果相等。——引出乘法分配律结论。这就降低了难度,收“水到渠成”之效。

环节三:以你能否用一个式子表示乘法分配律这一设计,巧妙引导学生用字母表示乘法分配律。让学生历经归纳推理和抽象概括的过程。

让学生谈自我听课的收获。有的同学说,我明白了什么是乘法分配律,有的同学说我会用乘法分配律了,还有的说,我发现利用乘法分配律解题很简便。这就到达了教学目的,取得了很好的教学效果。

不仅仅如此,教师提出质疑:向学生提出,你认为乘法分配律同乘法交换律和结合律的最大区别是什么?这一点教师有必要指出,让学生清楚。

如:(1)在乘法与减法的运算中是否存在乘法分配律。

(2)在除法中是否存在分配律。

这就是课堂的延伸,知识的延续,学生提出了很有价值的实际问题。

最终教师畅谈:真是“海阔凭鱼跃,天高任鸟飞”啊!期望同学们尽情地知识的海洋里遨游,结束本课教学。

教学过程是一个不断探讨的过程,不断追寻的过程。当然,在我的教学过程中必须存在不足之处,敬请各位提出宝贵意见,最终把一句话送给大家:记录真实的课堂,定格精彩的瞬间,触摸细节的意蕴,让每节课发出自我的声音。多谢大家!

运算律《乘法分配律》是北师大版小学数学四年级上册,第48-49页资料。本课的教学资料是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课资料的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算本事有着重要的作用,所以本节具有十分重要的作用。教材中呈现的步骤是:发现问题-提出假设-举例验证-归纳规律。

过去教学过于强调理解学习、死记硬背、机械训练,而《新课改》倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的本事、获取新知识的本事、分析和解决问题的本事以及交流与合作的本事等,将教学目标分为了三维。新课标指出“三维目标”是一个密切联系的有机整体,应当以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体此刻教学过程中,新课标指出教学的主体是学生我将教学目标以下三个方面:

1。知识与技能:在解决实际问题的过程中发现并理解乘法分配律并能用字母表示;会用乘法分配律进行简单计算。

动;发展比较、分析、抽象和概括的本事,增强用符号表达数学规律意识。

受数学规律的确定性和普遍适用性,进一步体会数学与生活的联系,增强学习数学的兴趣。

教学重点:探究乘法分配律的过程以及乘法分配律的变式练习。 教学难点:猜测、验证、总结乘法分配律。

的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有必须的观察、比较、分析、理解的本事,但运用本事不够,抽象概括本事不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有必须的难度。

知识经验,采用自主学习,当堂训练的教学模式。充分发挥学生的自主性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为进取主动参与学习。

本节课以学生自主学习、自主探索为主,经过学生的探索性和挑战性,让学生多思、多说、多练、进取参与教学的整个过程。

第一步,温故而知新,巩固前面学的乘法交换律、结合律。我出示课件,口算题。125×8 25×4 25×6×4 7×8×5 2×3×50

课件设计能够使学生看得清楚,也是为了让学生想说、敢说、抢着说,激发他们早点进入学习状态。

五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,教师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?创设这样一个充满现实的问题情境,使学生认识到现实生活中蕴涵着很多的数学信息,并主动进取地带着自我的知识背景、活动经验和理解走进课堂。(课件出示商店场景,出示的衣服是上衣、下衣,主要是要求学生进行搭配)

【创设情境,师生比赛。出示一组题中选取两道谁能一眼看题目说出得数。

(40 4)×25 37×45+55×37 68×32+68×68 (80+8)×125

比赛的结果:教师算得快,学生算得慢,学生心里就想教师怎样你算得那么快?这时教师导入,刚才的比赛教师比较快,是因为教师

又运用了乘法的一个法宝,你们想知识吗?此时同学们必须很想明白,学生的求知欲望到达高潮,教师告诉学生乘法的又一法宝是:乘法分配律。板书课题进入新知。】

(现代数学论指出:运用已有的知识获取新知识,这是最高的教学技巧。“温故知新者,能够为师矣”。可见从古到今都在重视新、旧知识间联系。所以,经过复习旧知,能够起到搭桥铺路、分散难点的作用。) 强化学生说理,是培养学生的口头表达本事和初步的逻辑思维本事的重要途径之一。

买这些些服装,教师一共要付多少元钱呢?你能用两种方法列出综合算式吗?这样的问题,让学生主动探究,引发思考,有旧知导入新知。首先,让学生独立思考,根据要求列式,教师巡视,教师要给予适当的指导。接下来是,交流反馈让学生说说自我的列式,得出板书

请学生生交流解题思路,并比较哪种解法更简便。

经过计算,会发现这两种解法虽列式不一样,可是结果一样,都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?

提出类比问题:如果施教师选择选择的是另两种服装,买的数量都是6件或8件的,你还能用两种方法来求一共要付多少元吗? 32×6 65×6 (32 65)×6 32×8 65×8 (32 65)×8 32×6 45×6 (32 45)×6 32×8 45×8 (32 45)×8

让学生列式计算,进行比较,得出结论。概括出规律。

(三)巩固练习。

我将布臵课本上的习题试一试,第一题,以及填一填第一题,巩固所学过的乘法分配律。 练习的设计不仅仅紧紧围绕教学重点,并且注重练习的层次和坡度。基本练习形式多样,到达了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行必须量的、针对性强、有实效的基本练习。在这个环节中,将还给学生学习的自主权,还给学生自我展示的空间。并经过比较、感悟计算方法的灵活多样,培养学生灵活运用所学知识解决生活中遇到的问题。

在这一环节中让学生主动回答这节课学到了什么,这些知识能够解决生活中的那些问题,学以致用。

在布臵作业时,我设计了有层次的习题,分为必做题与选做题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不一样的人在数学上得到不一样的发展”的基本教学理念。

教学设想:板书简单,思想清楚,有利于学生思维本事的发展。

六、说设计理念:

在认真解读了教学用书、教材后,我结合学生的认知特点,我在设计本节课时突出了两个方面的重点资料:

一是让学生在观察、猜想、验证、比较、归纳中探究乘法分配律,二是设计灵活多变的变式练习,让学生在不一样类型的练习中加深对乘法分配律的理解。具体说明如下:

一、让学生在观察、猜想、验证、比较、归纳中探究乘法分配律,并尝试了用语言来概括,在探究过程中培养了数学学习的方法。

我借助课本情境图引导学生列出了一个等式:

然后又创设了买演出服的情境,这样就列出了第二个等式:

这时,引导学生进行大胆猜测:你能根据上头两个等式把下头的等式补充完整吗?出示:

(30 20)×5= □×5 □×5 (10 90)×3= □×3 □×3 这时,学生就要先观察前两个等式的特点,进行填空。这时,启发学生思考:等号的左边有什么共同点?等号的右边和左边有什么关系?小组讨论。之后,让学生仿照例子再列举两个等式。这个时候,学生对于乘法分配律已经有了经验上的基础,教师问:“这样的例子多不多?能写得完吗?你有没有好的办法?”学生一下子想到了用字母表示。字母公式就这样出来了,再让学生试着概括。

整个探究过程不断引发学生猜测、验证、观察、比较、进而归纳,使学生在掌握新知的同时,体验到了数学思想方法。

二、练习的设计层次性强。

在练习题的设计方面,我进行了充分的思考,决定把练习题设计成不一样的层次

第一层次,练习乘法分配律的正向练习。

第二层次,对乘法分配律进行反向练习,并且让学生说出解题的方法。

第三层次,拓展练习,即把两个数的和变成三个数的和,等式能否成立?变成四个数的和呢?五个数的和呢?让学生明白,多个数的和乘一个数,等于每一个加数分别与这个数相乘。

差,你会发现什么?”引发学生进一步猜测、验证。

把练习设计成不一样层次的变化练习,能够使学生真正明白乘法分配律的意义,为学习简算打下了基础。

根据教材的编写意图,我抛弃已有经验,重新设计这节课,力图在教学目标、教学方式及学生的学习方式几方面有所创新,有所突破。确定教学目标时,我将传统的“使学生理解并掌握乘法分配律”,变为“经过经历探索乘法分配律的活动,发现乘法分配律”。教学的重点也由传统教学的重视结论的记忆、算法的模仿,定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。本节课试图在一种开放的教学环境下,让学生经过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生进取参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现了课堂教学中以学生为主体、教师为主导的教学原则。教学过程充满情趣,学生进取参与,思维活跃,同时使学生感知到现实生活中蕴藏着丰富的数学问题,充分体现“为解决实际问题而学习数学”的新理念。

乘法分配律教案(篇2)

乘法分配律

教学目标:1.引导学生探究和理解乘法分配律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:

乘法分配律的意义和应用。

教学难点:

乘法分配律的反应用。

一、铺垫孕埋伏

同学们,在学习新课前我们先来个比赛,请同学们准备好纸和笔,左边同学做第一题,右边同学做第二题,看看哪组先做完。

9ⅹ 37+9ⅹ369ⅹ(37+36)

做完的同学请举手,很明显右边的同学比较快,这两题有什么联系吗?他们的运算顺序不同可结果是相同。这就是我们这节课要研究的乘法分配律。(板书)

二授新

请看例题:

小组讨论,尝试用不同的方法解决。

教师引导学生用多种方法解答。

学生汇报自己的解法。引导学生说明不同算法的理由。

(1)(4+2)×25

=6×25

=150(人)

4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。

(2)4×25+2×25

=100+50

=150(人)

4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。

小组合作:

(1)两组算式有什么相同点?

(2)两组算式有什么不同点?

(3)有什么规律吗?

教师的汇报,灵活地进行引导,总结出要点。

你还能举出像这样的几组算式吗?

学生举例。

根据学生举例板书。

到底我们举的例子是不是符合这样的规律呢?请学生验证。

用字母表示出来吗?

同学们真棒,知道了什么是乘法分配律。那我再让同学们来个开火车的游戏。先想一想,怎样填,哪一组愿意来?

巩固练习

完成填一填

判断

同学们还记得上课时咱们的比赛吗?那组算的快?那是不是说明应用乘法分配律可以使计算简便呀。同学们来验证一下,请看这两道题。

学生汇报自己的收获。

教师引导小结,相应完善板书。

板书设计:

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25=100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

┆(学生举例)

(a+b)×c=a×c+b×c

两个数的和与一个数相乘,可以先把它们与这个

数分别相乘,再相加。这叫做乘法分配律。

乘法分配律教案(篇3)

教学目标:

知识与能力:

1、在探索的过程中,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

过程与方法:

1、通过探索乘法分配律的'活动,进一步体验探索规律的过程。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

情感、态度与价值观:

1、在这些学习活动中,使学生感受到他们的身边处处有数学。

2、增加学生之间的了解、同时体会到小伙伴合作的重要。

3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

教学过程:

一、创设情境,激趣导入。

1、出示:

125×8=25×9×4=18×25×4=

125×16=75+25=89×100=

教师请个别学生口算并说出部分题的口算依据及应用的定律。

2、再出示:119×56+119×44=

师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?

二、引导探究,发现规律。

1、出示课本插图

师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?

生:我看到两个工人叔叔在贴瓷砖。

生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。

生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。

师:你真细心。大家能根据获得的信息提一个数学问题吗?

学生提问题,教师出示问题:一共贴了多少块瓷砖?

2、估计

师:谁能估计工人叔叔大约贴了多少块瓷砖?

学生试着估计。

3、列式解答

师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。

学生用自己喜欢的方法计算,教师巡视。

师:谁来向大家介绍一下自己的算法?

生:6×9+4×9(板书)

=54+36

=90(块)

师:这边的6×9和4×9分别是算什么?

生:分别算出正面和侧面贴的块数。

师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?

生:我是这样列的,(6+4)×9(板书)

=10×9

=90(块)

师:你能说说为什么这样列式吗?

生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。

师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?

生:计算方法不一样,结果却是一样的。

师:所以这两个式子我们可以用一个什么样的数学符号连接起来?

生:等于号。

教师板书。

4、观察算式的特点

师:观察等号两边的式子,它们有什么特点呢?

生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边

的算式是这两个加数分别与一个数相乘,再把所得的积相加。

生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。

师:是这样吗?你们能再举一些类似的例子吗?

5、举例验证

让学生根据算式特征,再举一些类似的例子。

如:(40+4)×25和40×25+4×25

63×64+63×36和63×(64+36)

讨论交流:

(1)交流学生的举例是否符合要求:

(2)交流不同算式的共同特点;

(3)还有什么发现?(简便计算)

师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。

6、字母表示。

师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。

7、揭示课题。

三、应用规律,解决问题。

课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?

1、(80+4)×25

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

(3)鼓励学生独自计算。

2、34×72+34×28

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求。

(3)简便计算过程,并得出结果。

3、让生观察:36×3

=30×3+6×3

=90+18

=108

师:你能说说这样计算的道理吗?

生独自思考,小组讨论,全班交流。

四、总结。

师:说说这节课你有什么收获?

师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。

乘法分配律教案(篇4)

教材分析:

乘法分配律是冀教版小学数学第八册第24、25页的内容,在此之前,学生已经学习了整数的四则混合运算,两三步运算的实际问题,以及加法减法的交换律与结合律。学生日后将要学习的是小数的四则混合运算及其简便运算,分数的四则混合运算及其简便运算,乃至方程。本课内容在学生的整个学习脉络中起着承上启下的作用。

学情分析:

1.学生已经掌握了类比、迁移的学习方法,有了一定抽象建模的活动经验,并形成了相应符号化的思想。

2.学生对乘法的意义有所理解,已经学习了长方形的周长、面积,四则混合运算以及加法乘法的交换律、结合律。

教学目标:

1.知识与技能目标:在计算、观察、交流、归纳等数学活动中,经历探索乘法分配律的过程。

2.过程与方法目标:理解并用字母表示乘法分配律,能运用乘法分配律进行简便运算。

3.情感态度价值观目标:在探索乘法分配律的'过程中,能进行有条理的思考,能清楚地表达发现的运算规律。

教学重点:

发现、概括乘法分配律并能初步运用规律进行简便运算。

教学难点:

1.从正反应用比较乘法分配律的外形结构,清晰深刻地构建乘法分配律的模型。

2.理解乘法分配律的意义。

师:(出示算式102×25)同学们,你们能一眼看出答案吗?姬老师一下就知道它的答案是2550,想不想知道其中的奥秘?咱们赶快来探索探索吧。

设计意图:简单的导入,既调动了课堂的气氛,又为乘法分配律的简便运算打下了基础,由此自然地过渡到主体环节的学习。

1.师:(播放视频)同学们,国庆前,学校刚刚举行的运动会,大家还记得吗?开幕式的团体操最后一个队形,需要在方队周围拉红色飘带。谁能来说一说图中的已知信息。

师:你们能帮老师算一算需要多少米吗?只列算式不计算。

根据图中的信息,学生会有不同的算法。

生1:先算一条长与一条宽的和,再乘2,就是周长。

师:跟他思路一样的孩子请举手。我们一起再说说他的思路好吗?

师:跟他思路一样的孩子请举手。我们一起再说说他的思路好吗?

师:猜测是科学发现的前奏,你们的眼睛已经看出了精彩的一幕,现在赶快在你们的练习本上验证一下。

师:左右答案相同,它们中间可以用“=”连接起来。

设计意图:课程标准里面指出建立模型首先要从我们的现实生活中去抽象出数学问题,所以在这节课的设计当中,我是让学生回到自己现实的体育艺术节这样的一个情境当中去,然后抽象出我们的数学问题,从学生的旧知“周长”出发,以旧引新,让新知不新。由此,自然地过渡到第二个学习环节。

1.师:同学们,请用你们明亮的双眼观察等号左右两边的式子,你能发现它有什么相同和不同的地方吗?

生1:左边先算加法,再算乘法,右边先算乘法再算加法。

2.师:为什么相等,你能从乘法的意义上来说一说吗?

生:左边12加9的和乘2是21个2,老师右边12个2加9个2,也是21个2,所以它们肯定相等。

3.师:同学们,那你们知道左边的式子是怎么变到右边的吗?右边的式子又是怎么变到左边的呢?咱们先不急着发言,先把你的发现在小组内交流一下好吗?

学生组内交流。

师与生共同总结:从左到右是括号内的加数都与括号外的“2”相乘,最后相加了,也就是(板书:两个加数分别与一个数相乘);而从右边变到左边,是右边这个相同的因数“2”,到了左边乘了剩下两个因数的和,也就是(板书:一个相同的因数乘其余两个数的和)。这就是乘法分配律。板书课题。

师:乘法我们都知道什么意思,分配呢?分就是分别,配就是配对。也就是分别配对。在刚才的式子里,谁跟谁分开了?

(二)举例探索,掌握规律外形特征,灵活总结规律。

1.师:同学们,具有这样特征的式子,你们还能再写一写吗?请自选3个数,尝试写一写。

找两个同学板书自己写的算式,并读一读。师讲解左右如何变化。

2.师:同学们,如果老师给你一天的时间来写这样的例子,你们能写完吗?一年呢?

师:这样的式子有很多,怎么也写不完,所以他们中间必然存在一定的规律。

设计意图:在这一探究的过程中,探究问题的难度层层递进,学生人人参与,充分发挥各种感官的作用,成功在头脑中初步建立了乘法分配律的模型。由此,自然地进入下一个学习环节。

1.师:同学们,你们能用你们最喜欢的图形、符号、文字表示出这一规律吗?

师选择比较典型的答案写到副板书上。可再选择其中一个式子,引导学生从乘法分配律的概念上来解释。

2.师:同学们,现在你们知道这个规律到底是什么了吗?能不能用自己的话来说一说。

3.师引导规范学生的说法,即两个数的(和)与一个数(相乘),可以先把两个数(分别)与这个数相乘,再将两个积(相加),结果不变,这就是乘法分配律。

4.师:同学们,你们能像咱们之前学习乘法交换律、结合律那样用字母abc表示出这一规律吗?

学生回答,师板书。

5.创设语境,加深记忆。

师:同学们,咱们把a和b看成是爸爸和妈妈,c看成我。爸爸和妈妈都爱我,等于爸爸爱我、妈妈爱我,也就是爸爸妈妈分别爱我。那么反过来,爸爸爱我,妈妈爱我,也就等于爸爸和妈妈都爱我。所以,a乘b的积加a乘c的积肯定等于a加b的和乘c。

设计意图:在这一探究过程中,渗透了由特殊到一般、再由一般到特殊的认识事物的方法,能够培养学生概括、分析、推理的能力。由此,自然地进入下一个学习环节。

师:同学们,这个规律,我们是第一次和它见面吗?

出示ppt:1.两位数乘两位数2.周长3.组合图形求面积。

设计意图:在用旧知验证新知的过程中,加深了新旧知识的内在联系。

(2)27×(16+30)=——×——+——×——

设计意图:让学生初步的运用模型去完成,面向全体学生,使学生人人参与,灵活运用定律。

设计意图:提高学生的思维辨析能力,能辨析各种常见错误。

(1)102×25=

设计意图:引导学生用乘法分配律解算导入时的式子,既照应了开头,又使学生明白,我们为什么要学习乘法分配律。

乘法分配律教案(篇5)

教学目标

1.使学生理解的好处.

2.掌握的应用.

3.透过观察、分析、比较,培养学生的分析、推理和概括潜力.

教学重点

的好处及应用.

教学难点

的反应用.

教具学具准备

口算卡片、投影仪.

教学步骤

一、铺垫孕伏

1.  口算.

(27+73)×8    40×9+40×1    14×(10+2)   10×6+10×4

2.  用简便方法计算.(说明根据什么简算的)

25×63×4

3.  师生比赛,看谁算得又对又快.

20×5+5×80       (1250+125)×8

让学生说明是怎样算的?

二、探究新知

1.导入  :

刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,明白了乘法的又一个定律能够使运算简便,你们想明白吗?这就是我们这天要研究的资料.(板书课题:).

2.教学例6:

(1)出示例6:演示课件“”出示例6 下载

(2)引导学生观察每组的两个算式.

(3)教师提问:从上方的例子你发现了什么规律?

(4)学生明确:每组中的两个算式都能够用等号连接.

教师板书:(18+7)×6=150

18×6+7×6=150

(18+7)×6=18×6+7×6

(5)教师出示:20×(15+9)=480

20×15+20×9=480

20×(15+9)=20×15+20×9

学生分组讨论:每组中算式所表示的好处.

(6)反馈练习:按题要求,请你说出一个等式.(投影出示)

(__+__)×__=__+__×

教师提问:像贴合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

引导学生观察:等号左右两边算式的规律性

启发学生回答:首先是等号左边两个数的和同一个数相乘.

其次是等号右边两个加数分别同一个数相乘再把两个积相加.

最后是等号左右两边的两个算式相等.

3.教师概括运算定律:两个数的`和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做.

4.反馈练习:

横线上能填几?为什么?

(32+35)×4=__×4+__×4

(62+12)×3=__×__+__×__

教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?

根据练习学生从而得出:    (a+b)×c=a×c+b×c

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.

5.教学例7:演示课件“”出示例7 下载

(1)出示例7:102×43

启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?

引导学生比较:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用能够使计算简便.

教师板书:

(2)出示9×37+9×63

引导学生观察:这类题目的结构形式是怎样的?有什么特点?

教师提问:根据,能够把原式改写成什么形式?

根据学生的回答教师板书:9×37+9×63

=9×(37+63)

=9×100

=900

学生讨论:这样算为什么简便?

师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.

②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.

③另外两个不一样的因数,是两个能凑成整十、整百、整千的加数.

(3)揭示教师算得快的奥秘

上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便。此刻你们会了吗?

三、巩固发展 演示课件“”出示练习下载

1.  练习十四第1题.

根据运算定律在□里填上适当的数.

(43+25)×2=□×□+□×□

8×47+8×53=□×(□+□)

3×6+6×7=□×(□+□)

8×(7+6)=8×□+□×□

2.在横线上填上适当的数.

(1)(24+8)×125=__×__+__×

(2)25×(20+4)=25×__+25×__

(3)45×9+ 55×9=(__+__) ×__

(4)8×27+73×8=8×(__+__)

其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

3.把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×8 24×5+24×8

(3)20×(l+15) 0×17+20×15

(4)(40+28)×5 40×5+ 28

(5)(10×125)×8 10×8+125×8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4.选取题:

(1)28×(42+29)与下方的( )相等

①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

(2)与a×8-b×8相等的式于是( )

①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

(3)与(10+8+9)×5相等的式子是( )

①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

5.练习十四第4题,投影出示.

一辆凤凰牌自行车420元,一辆永久牌自行车405元.此刻各买三辆.买凤凰车和永久车一共用多少元?

四、课堂小结

这天我们学习了,明白了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.期望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

五、布置作业

练习十四第3题.

用简便方法计算下方各题.

(80+8)×25 35×37+65×37

32×(200+3) 38×29+38

板书设计

乘法分配律教案(篇6)

教学目标:

1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

2、透过观察、分析、比较,培养学生的分析、推理和概括潜力。

3、发挥学生主体作用,体验探究学习的快乐。

教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速决定。(生口算。)

1。猜想。

师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

师:好,我们来看一下它与前面的题目有什么不一样?

生:前面的题都是乘号,这道题既有乘号还有加号。

生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

师:这道题内含不一样运算符号了,有能口算出来的吗?说说你的想法。

生:(10+4)×25=10×25+4×25。

师:你是怎样明白的?你明白什么是乘法分配律吗?

生:我是从书上明白的,我明白它的字母公式(a+b)×c=a×c+b×c。

师:你自学潜力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

2。验证。

师:同学们看两个数的和同一个数相乘,如果能够这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

小结:透过验证,这道题确实能够这样算,那是不是所有的两个数的和同一个数相乘的算式都能够这样计算呢?透过这一个例子能下结论吗?(不能。)那怎样办?(再举几个例子。)好,下方请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都能够这样计算?

……

师:由于时光关系,老师就写到那里,透过举例我们能够发现,两个数的和同一个数相乘都能够这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下方请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

3。结论。

生:两个数的和同一个数相乘,能够用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

师:同学们真聪明,你们明白吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的好处。)

师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

师:回到第一题,看来利用乘法分配律,确实能够使一些计算简便。接下来,我们利用乘法分配律计算几道题。

师:透过这两道题的计算,我们能够看出,乘法分配律是互逆的。为了使计算简便,我们既能够从左边算式得到右边算式,又能够从右边算式得到左边算式。但遇到实际计算时,要因题而异。

师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都能够应用这样的方法。)

以上就是《乘法分配律教案模板6篇》的全部内容,想了解更多内容,请点击乘法分配律教案查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/164655.html

更多

猜你喜欢

更多

最新更新

更多