88教案网

认识教学反思

2023-05-06 认识教学反思

认识教学反思精选6篇。

一本书、一支笔、一个孩子、一位教师可以改变世界,在正式开课之前,教师都应该提前准备好课程教案。老师通过教学方案可以让学生更好的去掌握教学过程当中的重点和难点,为您提供88教案网的编辑整理的以下最新有关“认识教学反思”的资讯,还希望您能从本网页有所收获!

认识教学反思 篇1

圆的认识是学生已经初步掌握了直线图形特征的探索方法、并对圆有了初步的感性认识的基础上来进行教学的。目的是为以后学习圆柱体、圆锥体等知识打下基础。

一、把握学生已有知识经验,利用变化的幻灯片实现课堂有效学习。

学生对圆并不陌生,生活中这个完美的曲边图形几乎处处可见,全部学生都能从若干个平面图形中挑出圆。学生看到的圆一般都是静态的,而圆的本质特点是到定点距离等于定长的点的轨迹,是动点的轨迹,这和直边图形有着本质的区别。要想让学生感悟圆的图形性质特征,就需要让学生看到动点,看到圆“动态生成”的过程——点动成线。

圆是由一条封闭曲线围成的图形,它的特征主要体现在隐形的线段——半径和隐形的点——圆心上。

二、充分发挥学生的动手操作能力,动手学数学。

教师在学习的过程中应时刻关注学生的发展,尊重学生的选择,充分体现学生的主体性。新课标指出:“学生是学习的主人”,教师要“向学生提供充分从事数学活动的机会”。对圆的认识我的设计是从画圆开始。首先让学生利用手中的工具尝试自己画圆,然后展示所画的圆并说说用什么画的,重点放在用圆规规范画圆上。利用投影,先展示学生用圆规画圆的过程,然后让其他学生补充用圆规画圆的过程中需要注意的事项,使学生明确画圆时的定点、定长。这样的设计目的是让学生初步感知画圆可以利用手中的现有圆形物体来描画,也可以用圆规画出更规范的圆。

三、创设开放的生活情境,展现学生的不同思维。

每个学生都有分析、解决问题和创造的潜能,但是学生个体之间存在着一定的差异,这是必然的。学生在生活经验、认知特点、思维方式等方面的差异要求教师要适当创设开放性的问题情境,使学生能从不同的角度进行思考和探索。本节课几处开放性的设问都为学生创造了机会,使其不同思维都能在课堂中闪光。例如在解决“为什么车轮做成圆的”这一问题时,学生就展现出了不同的思维水平。绝大部分学生可以发现在同一圆内所有半径相等。学生用量的方法量出多条半径的长度,从而推断出所有的半径都相等。

四、课后出现了一些问题,一是最后的探索圆的特性没有时间上,第二学生对于半径和直径的关系并没有很深的感悟,第三,学生动手操作上还有许多的问题。

针对这三方面,在今后教学中,要加强图形与实际生活的联系。

(一)、可以在黑板上画了一个圆,学生很自然的说出是圆。让学生对圆看一看,摸一摸,想一想,圆和我们以前研究过的平面图形比一比有什么不一样的地方?让学生先独立思考,让后交流后汇报。学生的第一感受是圆没有角,这样的感知让学生摸的时候就很容易体会,还可以让学生说说,实际上只要最后总结出圆的线条不是直的而是弯的,那么,老师就可以总结出圆是曲线图形。接下来让学生自己创作圆,只要学生有一种即可,让后让学生介绍。有些学生画出的圆不是很标准,那么老师就可以自然过度到,下一部分画圆的最一般工具是圆规。

(二)、介绍完半径和直径后,可让学生通过练一练,判断哪条是直径哪条是半径?并量出他们的长度,你发现什么?判断可以同桌相互说,量完后可以让学生思考你发现什么?在这道题中,学生会发现在同一个圆内,直径是半径的两倍。这样学生有自身的感知后,再得出直径和半径的关系才足够深刻,然后出示两道画图题:1、画一个半径为3厘米的圆,2、画一个直径为3厘米的圆。再让学生在画圆中感知,直径和半径的关系,同时指出,圆规两脚间的举例是圆的半径。

(三)、最后在时间允许的条件下,对圆的认识进一步加深,包括对称轴,以及回到生活中的事例,如:学校要建一个圆形的水池,没有这么大的圆规怎么办?等等。

这节课利用多媒体教学充分调动学生的积极性,鼓励学生对新知识的探究,学生不仅认识了圆的各部分名称,学会了画圆、而且掌握了圆的特征,半径直径之间的相互关系,更重要的是通过学生的主动探究过程,使学生从知识的积累和能力的发展走向素质的提高;使学生学会了从不同角度来思考问题,创造性思维得到了培养和发展。

认识教学反思 篇2

“圆的认识”一课选自小学数学教材第11册,是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。教材的编排思路是先借助实物揭示出“圆”,让学生感受到圆与现实的密切联系,再引导学生借助“实物”、“圆规”等多种方式画圆,初步感受圆的特征,并掌握用圆规画圆的方法,在此基础上,再引导学生通过折一折、画一画、量一量等活动,帮助学生认识直径、半径、圆心等概念,同时掌握圆的基本特征。这样的编排,学生对于圆的相关概念及特征的理解和把握一般都是建立在教师的明确指引和调控之下,学生相对独立的探索空间不够,而与此同时,学生对于圆所内涵的文化特性也无从感受、体验,对于圆在历史、文化、数学发展过程中与人类结下的不解之缘感受不深。

基于这样的认识,我试图对本课的教学思路进行重新调整:一方面,通过拓展空间,将学生进一步置身于探索者、发现者的角色,引导学生在认识完圆的一些基本概念后,自主展开对于圆的特征的发现,并在交流对话中完善相应的认知结构;另一方面,我又借助媒体,将自然、社会、历史、数学等各个领域中的“圆”有效整合进本课教学,充分放大圆所内涵的文化特性,努力折射“冰冷”图形背后所散发的独特魅力。

想起美国学者泽布罗夫斯基,曾因为“在凝望波涛的时候”而产生了写作《圆的历史》这一迷人著作的冲动,而我――一个普通的年轻教师,又是如何想起要在自己的课堂里打破常规、冲破樊篱,演绎“走进圆的世界”这一多少有些另类的教学案例的呢?如今回想起来,是平静水面上漾起的一圈圈涟漪?是阳光下朵朵绽放的金色向日葵?是慈母心中那轮永恒的明月?是“长河落日圆”中夕阳下落日的余辉?是伟大思想家墨子笔下“圆,一中同长也”和数学巨著《周髀算经》中“圆出于方,方出于矩”的召唤?是古老的阴阳太极图所给予的神秘诱惑?是“没有规矩,不成方圆”这一古训背后的力量?还是西方数学哲学中“圆是最美的图形”所带来的无限诱惑?似乎都是,又不完全是。只是有一种莫明的冲动,一直萦绕心头,那就是:怎样让数学课堂再厚重些、开阔些、深邃些、美丽些……藉此,想到了圆,继而,便有了“走进圆的世界”这一大胆尝试。

●过程描述

[一]

师:对于圆,同学们一定不会感到陌生吧?(是)生活中,你们在哪儿见到过圆形?

生:钟面上有圆。

生:轮胎上有圆。

生:有些钮扣也是圆的。

……

师:今天,张老师也给大家带来一些。见过平静的水面吗,(见过。)如果我们从上面往下丢进一颗小石子(播放动态的水纹,并配以石子入水的声音),你发现了什么?

生:(激动地)水纹、水纹、圆……(声音此起彼伏)

师:其实这样的现象在大自然中随处可见,让我们一起来看看。(伴随着优美的音乐,阳光下绽放的向日葵、花丛中五颜六色的鲜花、光折射后形成的美妙光环、用特殊仪器拍摄到的电磁波、雷达波、月球上的环形山等画面一一展现在学生的眼前,见图①)从这些现象中,你同样找到圆了吗?

图①

生:(惊异地,慨叹地)找到了。

师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?

生:(激动地)好!

[二]

师:俗话说,“没有规矩,不成方圆”。意思是说,如果没有圆规,是――

生:――画不出圆的。

师:同学们都准备了一把圆规,你能试着用它在白纸上画出一个圆吗?

生:能。

(学生尝试用圆规画圆,交流,明确圆规画圆的基本方法。)

师:可要是真没有了圆规,比如在圆规发明之前,我们就真画不出一个圆了吗?

生:不可能。

师:今天,每个小组还准备了很多其他的材料。你能利用这些材料,试着画出一个圆吗?

生:能。

(学生以小组为单位,利用手中的工具和材料画圆。)

师:张老师发现,每个小组都有了各自精彩的创造。让我们一起来分享。

生:我们组将圆形的瓶盖按在白纸上,沿着瓶盖的外框画了一个圆。

师:那叫“拷贝不走样”。(生笑)

生:我们手中的三角板中就有一个圆形窟窿,利用它,很方便地画出了一个圆。

师:真可谓就地取材,挺好!(笑)

生:我们组在绳子的一端系一支铅笔,另一端固定在白纸上,绳子绷紧,将铅笔绕一圈,也画出了一个圆。

师:看得出,你们组的创作已经初步具备了圆规的雏形。

生:我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。

师:尽管这一方法没有能在白纸上最终“画”出一个圆,但他们的创造仍然是十分美妙的,不是吗?(生热烈鼓掌)

师:可是,既然不用圆规,我们依然创造出了这么多画圆的方法,那么俗语中为什么还会有“没有规矩,不成方圆”的说法呢?

生:我想,大概是古时候的人们没想到这些方法吧?(生笑)

生:我觉得不是这样,因为,或许一开始,“没有规矩,不成方圆”指的是没有圆规和“矩”画不出方和圆,但是流传到后来,它的意思已经发生了改变,不再仅仅指原来的意思了,而是指很多事情,必须要讲究规矩,遵循章法。(不少同学投以赞许的目光)

师:真没想到,一条普通的数学规律,经过千年流传,竟逐渐成为我们生活中一条重要的人生准则。当然,同学们能够利用各自的智慧,成功演绎“没有规矩,仍成方圆”,足以说明大家不凡的创造力了。

[三]

(通过自学,学生认识完半径、直径、圆心等概念后。)

师:学到现在,关于圆,该有的知识我们也探讨得差不多了。那你们觉得还有没有什么值得我们深入地去研究?

生:有(自信地)。

师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。第二,实在没啥研究了,别急,老师还为每一小组准备一份研究提示,到时候打开看看,或许对大家的研究会有所帮助。

(随后,伴随着优美的音乐,学生们以小组为单位,展开研究,并将研究的成果记录在教师提供的“研究发现单”上,并在小组内先进行交流)

师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!

生:我们小组发现圆有无数条半径。

师:能说说你们是怎么发现的吗?

生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。

生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。

生:我们组没有折,也没有画,而是直接想出来的。

师:噢?能具体说说吗?

生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?

师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了?

生:不需要了,因为道理是一样的。

师:关于半径或直径,还有哪些新发现?

生:我们小组还发现,所有的半径或直径长度都相等。

师:能说说你们的想法吗?

生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。

生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。

生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。

生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。

师:大家觉得他的这一补充怎么样?

生:有道理。

师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?

生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。

师:你们是怎么发现的?

生:我们是动手量出来的。

生:我们是动手折出来的。

生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽……

师:看来,大家的想象力还真丰富。

生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。

师:圆的大小和它的半径有关,那它的位置和什么有关呢?

生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。

生:我们组还发现,圆是世界上最美的图形。

师:能说说你们是怎样想的吗?

生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机

生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶……

师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示。没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?

生:好。

[四]

师:其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:“圆,一中同长也。”所谓一中,就是指一个――

生:圆心。

师:那同长又指什么呢?大胆猜猜看。

生:半径一样长。

生:直径一样长。

师:这一发现,和刚才大家的发现怎么样?

生:完全一致。

师:更何况,我古代这一发现要比西方整整早一千多年。听到这里,同学们感觉如何?

生:特别的自豪。

生:特别的骄傲。

生:我觉得我国古代的人民非常有智慧。

师:其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的(动画演示:圆向方的渐变过程,如图②)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?

图②

生:圆的直径是6厘米。

生:圆的半径是3厘米。

师:说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图③),认识吗?

生:阴阳太极图。

师:想知道这幅图是怎么构成的吗?(想!)原来它是用一个大圆和两个同样大的小圆组合而成的(出示图④)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?

图③ 图④

生:小圆的直径是6厘米。

生:大圆的半径是6厘米。

生:大圆的直径是12厘米。

生:小圆的直径相当于大圆的半径。

……

师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?

生:我觉得石子投下去的地方就是圆的圆心。

生:石子的力量向四周平均用力,就形成了一个个圆。

生:这里似乎包含着半径处处相等的道理呢。

师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。

师:其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――

(伴随着优美的音乐,如下的画面一一展现在学生眼前:生活中的圆形拱桥、世界著名的圆形建筑、中国著名的圆形景德镇瓷器、中国民间的圆形中国节、中国传统的圆形剪纸、世界著名的圆形标志设计等等,如图⑤。)

图⑤

师:感觉怎么样?

生:我觉得圆真是太美了!

生:我无法想象生活中如果没有了圆,将会是什么样子。

生:生活中因为有了圆而变得格外多姿多彩。

……

师:而这,不正是圆的魅力所在吗?

[五]

师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳……而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”……而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!

●自我反思

多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为障碍学生数学学习的绊脚石。事实上,造成这一现象的原因是多方面的,而一味注重数学知识的传递、数学技能的训练,漠视数学本身所内涵的鲜活的文化背景,漠视浸润在数学发展演变过程中的人类不断探索、不断发现的精神本质、力量以及数学与人类社会(包括自然的、历史的、人文的)千丝万缕的联系,显然应看成造成这一现象的重要原因之一。

众所周知,数学本质上是一种文化,《数学课程标准》在前言中明确指出:数学的“内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我立足从过程与凝聚两个角度进行探索。“圆的认识”一课正是我所作的一次粗浅尝试。

数学发展到今天,人们对于她的认识已经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程得以自然建构与生成。

在承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。藉此,教学伊始,我们选择从最最常见的自然现象引入,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,从宏观的视野丰富学生的认识视域;最后,我们更是借助“解释自然中的圆”和“欣赏人文中的圆”等活动,帮助学生在丰富多彩的数学学习中层层铺染、不断推进,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有的习惯思维与阴影,真正美丽起来。

当然,“理想的课程”如何转化为“现实的课程”,这当中仍然有许多值得深切关注的话题。就拿本课教学而言,实施下来,应该说,学生对于“圆”这一冰冷图形背后所蕴含的人文的、文化的特性的感受还是十分真切的,然而,作为问题的另一方面,对于基本的数学知识、数学技能的掌握,在教学后的反馈中也确实暴露出了一定的问题,尤其表现在部分学生对于圆的半径、直径等概念的理解不够到位,对于直径、半径及其与圆之间的关系的掌握不够透彻等。因而,今后我们在数学课堂演绎数学文化、数学精神等层面的同时,如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,应该还是有一定的启示意义的。

认识教学反思 篇3

《圆的认识》是一节概念课,之前学生学习的都是直线图形,而这节课学习的圆是一种曲线图形,本节课的教学内容也是以后学习圆的周长,圆的面积等的基础,所以至关重要。通过课堂教学我感慨颇多,既有成功的喜悦,又有失败的遗憾,下面我从两个方面谈谈自己的体会:

成功之处:

1、联系生活实际,在课前让学生搜集带有圆形的物品和剪出小圆片,并且相互展示,这样上课前就给了学生丰富的感性认识,为进一步学习打下了基础。

2、让学生经历探索的过程,让学生在老师的引导下,亲自动手折一折,画一画,通过自己的亲身参与,了解了圆的各部分名称和特点。

3、让学生自主探索圆的直径与半径的关系,通过让学生量一量,比一比,和同桌讨论,与小组其他成员的探究,培养了自主合作探究的习惯和能力。

4、抓住了重点突破了难点,在认识圆的直径和半径的关系时,学生最容易忘记“在同一个圆里”,我先让学生自己量,然后与同桌比较,最后小组讨论,从而给学生留下了深刻的印象。

认识教学反思 篇4

对称性是图形的重要性质。与其他平面图形相比,圆具有很好的对称性:它是一个轴对称图形,任意一条直径所在的直线都是它的对称轴;它是一个任意旋转对称图形:圆上的所有点绕圆心旋转任意一个角度后都在圆上。“圆的认识(二)”主要是使学生认识到圆的轴对称性,引导学生开展折纸活动,探索圆的轴对称性以及同一个圆里半径与直径的关系,通过与其他图形对称性的比较体会圆所具有的很好的轴对称性。

学生通过五年的学习,掌握了一些数学学习的方法,初步具备了一定的分析、思维能力。学生经过第一课时已经对圆有了初步的感性认识。在感知的基础上,通过动手操作让学生加深认识圆心、半径和直径,再引导学生对圆进行测量来发现直径和半径的存在,再而引出直径与半径的含义。然后通过学生自己测量来加深“直径与半径”的联系。为学生继续学习圆的周长和面积做好准备。孩子一般是对基础知识能比较熟练的掌握,但在知识的运用方面存在一定的缺陷,特别是如何运用有关的知识解答实际生活问题。本课的内容结合学生的实际,教学过程中设计了一些生活情境,很容易激发学生的学习兴趣,给学生提供了充分展示自己的机会,学生能围绕本节课的主题积极主动地去探求知识。

认识教学反思 篇5

一、反思教具、学具准备

要很好的实现这些课的教学目标,必须要有充分的教具、学具准备。因为今天是开学第一节数学课,所以配套的学具没有到位,虽然课前要求学生自己准备好相应的立体图形实物等学具,但从今天上课的表现来看,很多同学并没有准备,以致影响整体教学效果,没有实现人人动手操作的课堂氛围。

二、反思教学目标:

这节课上完以后,我觉得我的孩子对平面图形已经能够准确识别,但还不能很好的说出各种平面图形的特征。因为一年级学生的认识特征,他们对平面图形有一定感性认识,但抽象出平面图形概念还是有一点难度。

三、反思教学重难点:

一节课是否上得成功,主要是看能否达到教学目标,其次是看重难突出了吗?能在课堂教学中帮孩子解决难点吗?因为教学就是为了帮学生解惑。我这节课的难点是:1、长方形、正方形、三角形、圆、平行四边形这五种平面图形的辨认;2、图形摆放的位置不同了如何辨认。但在课堂上没有很好的帮孩子解决问题,我的起步太高了,而且没有帮孩子在研究平面图形特征及区分上给予阶梯,引导学生不够到位,而且还拔苗助长了,这样对学生的学习是没有帮助的。

四、反思教学方法:

这节课我的主要教学方法是让孩子自己去研究图形,去发现问题并解决问题,这个方向是对的。尤其在教学伊始,通过引导学生怎样画手形,很多同学想到了印、描的方法,为后面从立体图形中画出平面图形作好了铺垫。但作为老师应该如何去放,什么时候收呢?这才是最重要的,就我这节课来说,我虽然做到了放,但却放得不合理,做到了收,但收得不全面,因为在讨论汇报这五种平面图形过程中,我有让孩子自己去找各种图形的特征难度太大,放给学生去做,但学生无从入手去进行研究平面图形的特征,也不懂得研究;收得不全面是因为孩子不懂得系统的找到图形的特征,汇报出来的结果不能达到我想要的,所以导致这节课的知识点没有突出,还令学生学得模糊了;另外,在练习上,很多孩子还没能很好看分辨出正方形、长方形、梯形与平行四边形;把一些平面图形斜着放的时候,学生也很难辨别,这就是难点没有突破好的问题。

今后需要注意问题:

通过这节课的教学,使我知道许多教学上的误点,我个人认为如果要上好一节课要做到以下几点,同时也请各位老师多给意见,有不对的地方请多指教。

1、全面理解教材

(1)把握本教材教什么,学生要掌握什么知识。

(2)认真细读教参与课标,了解教学的重难点。

2、充分了解学生。

(1)、了解学生的认知水平。

(2)、了解学生的学习习惯。比如是不是每个学生都能准备好学具,如果不能,教师应该适时准备几组学生课堂所需学具。

3、根据本班学生的特点与课时,整合教材

(1)每位教师都就应该有驾驭教材的能力,不一定要按教材所说的课时去开展教学,可以根据本班学生的学习特征及对教材的理解来组织教学。

(2)做好单元教学设计。每个单元应该让学生掌握什么首先老师要知道,并写好单元的教学目标及做好本单元的整体设计。

4、设计好课时教学目标

(1)目标要明确。

(2)目标要易于操作。

(3)目标要体现三维。

认识教学反思 篇6

课堂作业新设计

A类

5 6×5=30(根)

B类

9×3=27(只)

教材习题

教材第53页“练习十一”

1. (1)2 (2)3 2. 3

3. (1)18÷6=3 (2)(答案不唯一)兔子的只数是天鹅的几倍?24÷8=3

4. (1)16÷2=8 (2)略

5. 7×3=21(只) 6. 20 24 15 42

7. (1)18÷3=6 (2)3×2=6(个) (3)略

8. (1)6×6=36(岁) (2)(36-1)÷(6-1)=7

9. (1)8×6=48(颗) 减少54-48=6(颗) (2)54÷6=9(颗) 增加9-8=1(颗)

10*. 1分钟后1×2=2(个) 2分钟后2×2=4(个) 3分钟后4×2=8(个) 8÷1=8

11*. (5+3)×2+3=19(个)

求一个数的几倍是多少

8×4=32(元)

答:象棋的价钱是32元。

求一个数的几倍是多少用乘法计算。

1.创设贴近学生生活实际的情境。小学数学中大部分学习内容都可以在生活中找到原型。基于儿童的心理发展特点,从学生的生活中提取数学学习的素材,使他们感受到课堂上学习的数学知识来自于生活,感知数学学习的价值,激发他们学习数学的兴趣。

2.数学活动。通过摆小棒的操作活动给学生提供充分的数学活动的机会,让学生经历了做的过程,学生对“倍”这个概念不仅认识了结果,而且借着直观教具,在做的过程中亲身体验了“倍”的含义,创造了倍,自然就理解了倍。还培养了学生操作、观察的能力。

3.充分利用学生已有的经验学习数学,以旧引新。在教学时让学生结合情景图以旧知乘法作为学习基础来学习,达到化抽象为直观、化难为简的效果,遵循循序渐进的规律。在教学“倍”的概念时不急于引出学习“求一个数的几倍是多少”的方法,而是先进行概念的巩固,让学生在掌握了“倍”的概念后再去学习“求一个数的几倍是多少”的方法,这样一来学生的新知识就会学得比较扎实。

以上就是《认识教学反思精选6篇》的全部内容,想了解更多内容,请点击认识教学反思查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/135812.html

更多

猜你喜欢

更多

最新更新

更多