88教案网

六年级上册数学《圆的认识》教案

六年级上册数学《圆的认识》教案。

在上课时老师为了能够精准的讲出一道题的解决步骤。老师需要做好课前准备,编写一份教案。在上课时遇到各种教学问题都能够快速解决,那怎样写才能有一份高质量教案呢?下面是小编精心收集整理,为你带来的六年级上册数学《圆的认识》教案,但愿对你的学习工作带来帮助。

六年级上册数学《圆的认识》教案 篇1

问:本单元在学生学习了整数、小数,分数的意义、性质和实际应用的基础上,教学百分数的知识。这一单元教学哪些知识?是怎样编排的?

答:本单元教学的知识包括百分数的意义及读写方法,百分数与小数、分数的相互改写,简单的求一个数是另一个数的百分之几的实际问题。这些内容分成三段编排。

百分数的意义是十分重要的基础知识,它与分数的意义既有联系,也有区别。只有理解了百分数表示一个数是另一个数的百分之几,才能正确应用百分数解决实际问题。为此,教材把百分数的意义及百分数的表示方法安排在例1里教学,并配置练习十九帮助学生深化对这一概念的理解。

百分数与小数、分数的相互改写,一方面沟通了不同形式的数的内在联系,进一步突出百分数的意义,另一方面也是解答有关百分数的实际问题所需要的基本技能。为了便于教学,教材编排两道例题,先教学百分数与小数的互化,再教学百分数与分数的互化。同时,安排练习二十,帮助学生形成互化的技能。

百分数的应用在小学数学里占有很显著的地位,本单元仅教学简单的求一个数是另一个数的百分之几的问题。编排两道例题和练习二十一,从比较一般的求百分数问题到较特殊的求百分率问题,让学生体会百分数在日常生活和生产劳动中的广泛应用。至于百分数的其他实际问题,将在六年级(下册)继续教学。

本单元教材还注意数与代数、统计与概率两个领域内容的有机结合。如,在统计图和统计表中呈现百分数,用百分数表示事件发生的可能性这些结合赋予百分数丰富的具体含义,促进百分数概念的形成,体现了百分数有统计量的作用,有助于培养学生初步的数据分析意识。

问:教材是怎样引导学生理解百分数意义的?教学时应注意什么?

答:百分数与分数是两个有联系的概念,教材充分利用两者的相同属性,从分数引出百分数,揭示百分数的意义。例1的统计表里有三名队员投篮的数据,包括各人的投篮次数、投中次数、投中次数占投篮次数的几分之几。学生完全能够理解这些数据,进入认识百分数的最近发展区。表格里写出投中的比率,让学生联系已有的知识经验,体会表格里的三个分数也可以看作投中次数与投篮次数的比。初步接触比率,对接受百分数又叫做百分比或百分率会有所帮助。

例题统计分析队员们的投篮情况,需要比较三人投中比率的高低,即比较三个异分母分数的大小。三个分数的公分母恰巧是100,通分后的三个分数分别表示三名队员投中次数占投篮次数的一百分之几,教材由此概括出:表示一个数是另一个数的百分之几的数,叫做百分数。突出了百分数反映两个数量间的倍数关系,是分母为100的分数。

教学百分数的意义还应注意以下五点:

第一,引导学生经历具体抽象具体的过程,这是概念教学的基本过程。在例题里要逐一详细解释64/100、65/100、60/100的具体含义,从而概括认识这三个分数都表示投中次数是投篮次数的一百分之几,都是一个数与另一个数相比的结果,都反映两个数量的倍数关系,都是分母为100的分数。三个分数的共同的数学内容,是百分数概念的本质属性。寻找这些共同内容,是关于百分数意义的感知活动。练习十九第1题,要具体解释每个百分数的含义,指出它们分别是哪两个数量相比,把什么数量看作单位1。将抽象的数学概念具体化,有助于学生深入体验百分数的意义。

第二,安排学生把百分数与分母是100的分数相互改写,把百分数与后项是100的比相互改写,并交流改写的思考和方法。如第99页试一试,练习十九第4、5、6题。前一类改写能加强对百分数意义的理解和百分数的读写技能,也为百分数和分数的互化作了铺垫。后一类改写沟通了百分数与比的联系,既进一步体验了百分数的意义,还理解了百分数可以叫做百分比。

第三,利用练习十九第3题,弄清百分数与分数的联系与区别。这道题里的分数都是分母为100的分数,其中有的是百分数,有的则不是。通过判断哪几个分数可以用百分数来表示?哪些不能?再一次凸现百分数的意义。当分数具有一个数与另一个数倍比(几倍或几分之几)的意义时,它与百分数在意义上是一致的,可以写成百分数的形式。当分数表示一个数量是多少的时候,它不具备百分数的属性,不能写成百分数。

第四,利用第99页练一练,练习十九第8、9题,体会百分数与1的关系。在练一练第1题里,每个大正方形都表示1,其中的涂色部分和未涂色部分都是1的百分之几,同一图中的两部分合起来刚好是大正方形,与图对应的两个百分数之和是100%。可见,任何一个百分数都有相应的1,当百分号前面的数小于100时,这个百分数小于1;当百分数的分子是100的时候,这个百分数等于1。把这些认识应用到第8题,就能把整个下载任务看成1,通过100%-65%算出还有35%没有完成。第9题扩展对百分数的认识,至诚超市和大达超市的营业额分别比佳美超市多20%和少15%,这两个百分数都把佳美超市的营业额看作1,表示至诚超市营业额的百分数120%(1+20%)大于1,表示大达超市营业额的百分数85%(1-15%)小于1。

第五,百分数只表示一个数是另一个数的百分之几,不表示两个数量各是多少。第101页第10题,如果100人表演团体操,其中男生有40人;如果200人表演团体操,其中男生有80人。男生的具体人数都是根据男生人数占40%的含义推算出来的。可见,这个百分数只表示参加团体操表演的男生人数与总人数的关系,只表示男生人数在总人数里所占的份额。这个关系与份额是确定的,至于男生究竟有多少人,还与参加表演的总人数有关。由此可知,第11题两个学校的女生人数不一定相同,尽管两校的女生人数都占学生总数的49%。

问:关于百分数与小数或分数的相互改写,教材在编写上有哪些特点?

答:例2与例3分别教学百分数与小数、百分数与分数的互化。我们知道,分数化成百分数的时候,一般先把分数化成小数,再把小数化成百分数。可见,小数化成百分数是分数化成百分数过程中的一步,这是例2与例3的内在联系,也是教材依次编排这两道例题的主要原因。教材引导学生应用小数与百分数的意义,以及分数与除法的关系,经历改写过程,理解方法,发现规律,形成技能。教材编写注意了以下几点:

1.创设需要改写的问题情境。例2比较王红和李芳完成仰卧起坐的情况,实质上是比较1.15与110%两个数的大小。其中一个是小数,另一个是百分数,需要化成相同形式的数才能看出谁大谁小。例3把调查获得的3/5与2/7分别用百分数表示,直接提出了分数化成百分数的要求。这两道例题都结合具体的问题情境,提出改写数的学习任务,让学生感受改写数的表示形式是有意义的活动,是解决实际问题的有效方法。

2.鼓励学生探索方法。小数与百分数的互化主要应用小数的意义和百分数的意义,分数化成百分数主要应用分数与除法的关系。改写数需要的知识学生已经掌握,因此,两道例题都应让学生独立思考,充分参与改写数的活动。

例2同时出现小数化成百分数和百分数化成小数,这是考虑了学生独立解决问题会有不同的思路,选择不同的方法,教学应该尊重他们的想法和做法。在交流时,学生既能介绍自己的思考,也能吸收他人的方法,集思广益,资源共享,从而获得完整的知识。

例3只把分数化成百分数,试一试才把百分数化成分数。把百分数与分数的互化分别教学有两点原因:一是由于两种改写的方法不同,涉及的已有知识不同,分开编排便于教学。二是由于分数化成百分数,分数的分子除以分母有除尽和除不尽两种可能,在除不尽的时候要交代一般的处理方法保留三位小数(即在百分号前面保留一位小数)。

教学两道例题,要帮助学生理清改写思路,培养推理能力。如1.15化成百分数,先想1.15是两位小数,根据两位小数表示一百分之几,可以写成115/100;再想百分数是分母为100的分数,有特定的表示形式,115/100可以写成115%。又如110%化成小数,因为110%是百分数,所以能写成110/100;因为110/100的分母是100,所以能写成两位小数并化简为1.1。

3.引导学生发现规律,掌握改写要领。例2虽然把小数1.15化成了百分数115%,仅一次改写得到的体验是不深刻的,所以第102页试一试继续把一位小数0.3和三位小数0.248分别化成百分数。教材用填出分子的方式,展现了小数分母是100的分数百分数的过程,在此基础上,比较百分号前面的数与原来的小数,发现从小数到百分数,有小数点向右移动两位、添上百分号等规律性的变化,从而总结出小数化成百分数的要领,并通过逆向思考,推理出百分数化成小数的方法。

学生在例3中两次把分数化成百分数,第103页试一试又把三个百分数改写成分数,在此基础上,教材让学生想一想:分数化成百分数、百分数化成分数要注意什么?这里的注意有两层内容:一层是基本的思路和方法,即先把分数化成小数,再把小数改写成百分数;先把百分数写成分母是100的分数,再化简分数。另一层是关于特殊情况的处理,如分数的分子除以分母,除不尽怎么办?又如百分数写成分母是100的分数,如果分子是小数怎么办?

问:本单元应用百分数的知识解决哪些实际问题?两道例题的教学重点各在哪里?

答:求一个数是另一个数的百分之几,是百分数的一类应用。本单元例4和例5都是百分数的简单应用,所解决的问题只需要一步计算(列出的算式里只有一个运算符号)。例4教学一般的问题,和百分数意义的联系很明显,容易找到相比较的两个数量。例5教学求出勤率的问题,是百分数意义的专门应用。先编排一般的问题,能理解求一个数是另一个数的百分之几问题的数量关系和解答方法,以这些知识为基础,教学求百分率的问题,难度就小了。

求一个数是另一个数的百分之几,可以看成求一个数是另一个数的几分之几的特殊情况。它的问题表述形式、数量关系以及选用的运算都与求一个数是另一个数的几分之几相同,但问题的答案必须是百分数。教材在认识分数的时候,编排了求一个数是另一个数的几分之几的问题,本单元例4的教学重点是沟通新旧知识的联系,把求一个数是另一个数的几分之几的经验迁移到新的问题情境中。这道例题用条形图表示王红等3人一周中长跑的路程,学生看了条形图,不仅能了解各人跑的千米数,还能引起对旧知识的回忆,直观地联想到李芳跑的千米数是王红的4/5,王红跑的千米数是林小刚的5/7因而在求李芳跑的路程是王红的百分之几时,很自然地想到先求出李芳跑的路程是王红的几分之几,再化成百分数。教材通过大卡通告诉学生,求4是5的百分之几,可以先用小数表示4除以5的商,再把小数化成百分数。让学生体会,如果先写成分数形式的商,还得化成小数再写成百分数,不如用小数表示除法计算的结果简便。试一试求王红跑的路程是林小刚的百分之几,已经列出了除法算式,让学生求商并写成百分数,教学时要注意两点:一是突出求百分之几问题的数量关系,这里是王红跑的路程与林小刚跑的路程比,把林小刚跑的路程看作单位1,而例4是李芳跑的路程与王红跑的路程比,把王红跑的路程看作单位1。所以,王红跑的千米数在例4的算式里是除数,在试一试的算式里是被除数。二是算式57的商是循环小数,应该和前面的分数化成百分数一样,遇到除不尽时,商保留三位小数,即百分号的前面保留一位小数。

例5教学求百分率的实际问题,关键是理解出勤率的含义。教材指出,出勤率就是实际出勤人数占应出勤人数的百分之几,详细解释了出勤率的含义,把求百分率的问题回归成求一个数是另一个数的百分之几的问题。这样,学生就能理解求出勤率的方法与算式。在计算田径队周一的出勤率后,让学生自选两天的数据计算相应的出勤率,巩固对出勤率的认识。周三、周四的实际出勤人数与应出勤人数相同,算式是4040=1,要指导学生把1改写成100%。还要反思,为什么周一、周二、周五的出勤率不是100%?出勤率会高于100%吗?使学生对出勤率的体验深入一步,成为理解其他百分率的基础。教材的练习中陆续出现成活率、入学率、升学率、森林覆盖率、造林合格率、近视率让学生在出勤率的基础上,体会这些百分率的含义,感受百分率在生活、生产中的广泛应用。

六年级上册数学《圆的认识》教案 篇2

三、动手实践——加深理解

1.探究长方体面的特征

师:我们已经认识了长方体各部分名称,接下来我们来研究长方体的面有哪些特点。先请每组同学选择1~2个想研究的长方体物体,采用量一量、剪一剪、拼一拼等方法,当然也可以用信封里的长方形纸片做一个长方体,看同学们能否发现长方体的面有哪些特征?待会儿每组派代表汇报你们的探究成果。

师:哪组愿意先派代表来说说?

学生分组汇报讨论结果。

师:同学们真了不起!想了这么多的办法来验证长方体相对的2个面是相等的。

师:现在,你们拿起自己的长方体进一步观察,看一看长方体的6个面各是什么形状的?

通过学生观察得出两种情况:一种是6个面都是长方形:(板书:6个面都是长方形)另一种情况是有4个面是长方形,另外两个相对的面是正方形(板书:特殊情况有两个相对的面是正方形)。

2.探究长方体棱、顶点等特点

师:请同学们数一数长方体共有多少条棱?你是怎样数的?(引导学生数时,要有序、不重复、不遗漏)

学生讨论后,分组汇报。

师:怎么证明相对的棱长度相等?

学生分组汇报证明方法。

师:大家用了不同的方法证明相对的棱长度相等。再请同学们拿起自己的长方体数一数,一个长方体共有多少个顶点?

3.抽象概括总结特征

师:刚才同学们通过自己动手实践,探究了长方体的面、棱、顶点等特征,谁能较完整地说一下长方体有什么特征?

六年级上册数学《圆的认识》教案 篇3

新课程强调数学课堂教学应关注学生经历和获取知识的过程,再现数学知识的生活原型。因此,不少教师都借助多媒体将教材中静态的内容动态呈现。然而农村大部分学校教学条件还比较落后,许多学校连幻灯都没有,更别说多媒体了。可以说,多媒体教学尚属贵族消费,许多农村小学教师只能是望洋兴叹。为此,在这偏僻、落后的农村小学,要用好新教材,这就要求我们教师应立足实际,根据具体的学情创造性地使用教材。笔者最近参加了一些学校的教学研讨活动,听了不少老师的探讨课,给我留下深刻的印象是:没有多媒体的课也同样精彩。现将长方体的认识一例整理描述如下,与大家一同分享。

一、生活入手引出课题

师:(手中拿着纸牌)这张纸牌是什么形状这一副纸牌呢(生:一张是长方形、一副是长方体)。

师:生活中你见过哪些物体的形状是长方体的

生:牙膏盒、化装品盒、粉笔盒、冰箱

师:你们觉得长方体有什么特点

生:(略)

看来同学们对长方体的特征还是有所了解的。这节课我们来进一步研究长方体。

[评析:教师利用日常生活中常见的实物即纸牌入手,从平面到立体,符合学生的认知规律,使学生从直观上初步感知立体图形与平面图形的不同,建立了长方体的表象,为学习新知作好铺垫。]

二、实物感知形成表象

让学生初步感知长方体的面、棱、顶点等。

师:请同学们拿出长方体模型(事先准备好),先摸一摸,再想一想你们摸的平平的部分叫什么

生:面。

师:再用手摸摸长方体相邻的两个面相交的这一条共有的边,它叫什么呢

生:有的说叫边;有的说叫线段)。

师:我们给它一个名称,叫做棱。同学们用手再摸一摸自己带来的长方体的棱。再用手摸摸长方体三条棱相交的地方有什么

生:有一个点。

师:我们把三条棱相交的点叫做顶点。

[评析:借助教具、学具,通过教师的引领,让学生触摸长方体实物,从整体上观察长方体,直接感知长方体有面、棱和顶点等三个要素,为进一步探究长方体的特征做准备。]

三、动手实践加深理解

1.探究长方体面的特征

师:我们已经认识了长方体各部分名称,接下来我们来研究长方体的面有哪些特点。先请每组同学选择1~2个想研究的长方体物体,采用量一量、剪一剪、拼一拼等方法,当然也可以用信封里的长方形纸片做一个长方体,看同学们能否发现长方体的面有哪些特征待会儿每组派代表汇报你们的探究成果。

师:哪组愿意先派代表来说说

学生分组汇报讨论结果。

师:同学们真了不起!想了这么多的办法来验证长方体相对的2个面是相等的。

师:现在,你们拿起自己的长方体进一步观察,看一看长方体的6个面各是什么形状的

通过学生观察得出两种情况:一种是6个面都是长方形:(板书:6个面都是长方形)另一种情况是有4个面是长方形,另外两个相对的面是正方形(板书:特殊情况有两个相对的面是正方形)。

2.探究长方体棱、顶点等特点

师:请同学们数一数长方体共有多少条棱你是怎样数的(引导学生数时,要有序、不重复、不遗漏)

学生讨论后,分组汇报。

师:怎么证明相对的棱长度相等

学生分组汇报证明方法。

师:大家用了不同的方法证明相对的棱长度相等。再请同学们拿起自己的长方体数一数,一个长方体共有多少个顶点

3.抽象概括总结特征

师:刚才同学们通过自己动手实践,探究了长方体的面、棱、顶点等特征,谁能较完整地说一下长方体有什么特征

[评析:改变以往教师包办的做法,教学中充分相信学生,为他们提供足够的思维活动空间,使其在看、数、量、剪、拼、比、想等实践活动中,有充分的展示自己才能的机会。并凸显了知识的形成过程,使学生不但知其然,而且知其所以然,进而有效地培养了学生的自学及探究能力。]

4.认识长方体的长、宽、高

小组合作,做长方体的框架。

师:请同学们拿出准备好的小棒、塑料拐角,做一个长方体的框架,并讨论汇报回答以下2个问题:

(1)它的12条棱可以分成几组怎样分

(2)相交于同一顶点的三条棱长度相等吗

学生分组汇报讨论结果。

教师再将长方体横放、竖放、侧放,让学生分别说出长方体的长、宽、高。同时教师指出:长方体的长、宽、高根据长方体所放的位置的不同而改变,相交于每个顶点的三条棱的长度都可以分别叫做长方体的长、宽、高。

[评析:通过让学生用小棒和塑料拐角,自己做一个长方体框架这一实践活动,是让学生再现了长方体的表象,有效培养了学生相互合作和动手操作的能力,进一步发展了学生的空间观念。在教学认识长方体的长、宽、高时,注重在变式中理解,通过把长方体的横放、竖放、侧放,使学生真正理解了长、宽、高的含义。]

四、巩固应用深化认知

1.基本练习:P23第1、2题。

2.综合练习:P23第3题。

3.拓展练习:(填一填)

(1)把一块长、宽、高分别是16厘米、11厘米;7厘米的长方体,平均锯成两块小长方体。

其中每块小长方体都有()个面、()条棱、()个顶点。

(2)面积增加了()平方厘米。

[评析:通过不同形式的练习,既深化了知识,又激发了学习兴趣,同时学生综合运用所学知识解决简单的实际问题的能力和空间观念又得到了培养。尤其是第3题的变式拓展练习,让学生在加深所学知识的理解的同时,又培养了灵活应变能力。]

五、全课小结总结升华

师:通过这节课的学习,你有什么收获

生:(略)

[总评:本节课求新存异,扎扎实实走好每一步,教师仅利用一根粉笔,一块黑板,几件必须的教具、学具,没有多媒体的辅助,同样为大家呈现了一节较为精彩的课。俗话说:百闻不如一见,百看不如一干。很多抽象的数学知识如能创造机会让学生动手操作,集体讨论,学习效果会更好。本节课在新知探究中,教师能立足实际、因陋就简,利用好现有的教具、学具,引领学生在认识长方体面、棱、顶点的三个要素中,理解了长方体三要素的基本概念。再通过让学生看、摸、数、量、剪、比,甚至。让学生通过小组合作制作长方体等丰富的实践活动,促使学生亲历、感悟长方体的特征,使其在真正的意义上理解了长方体的含义。]

六年级上册数学《圆的认识》教案 篇4

教学内容:

教材第31-32页的内容及做一做,练习六的第1、2题。

教学目标:

1、初步认识圆锥,知道圆锥各部分的名称,掌握圆锥的特征。

2、了解圆锥的高的测量方法。

教学重点:

掌握圆锥的特征。

教学难点:

掌握圆锥高的测量方法。

教学过程:

一、激趣定标

1、回顾:我们学习了物体的哪些特殊形状?你能在生活中找出具有这些形状的物体吗?(三角形、长方形、正方形、圆、长方体、正方体、圆柱)

2、欣赏日常生活中圆锥形的物体,介绍圆锥,你还见过哪些圆锥形的物体?

今天我们就来认识圆锥。

二、自学互动,适时点拨

【活动一】认识圆锥的特征

学习方式:独立学习、组织交流

学习任务

1、取出圆锥体学具,请大家看一看、摸一摸,与圆柱比一比,你看到了什么?摸到了什么?说给同桌听。

2、通过观察,认识圆锥的顶点、面。

(1)圆锥有一个顶点和两个面,一个底面,一个侧面。

(2)圆锥的底面是一个圆,侧面是一个曲面。

3、讨论、交流,认识圆锥的高。

(1)圆锥的高在哪里?

(2)你能用自己的话说说什么是圆锥的高?(从圆锥的顶点到底面圆心的距离是圆锥的高。)

(3)圆柱的高有无数条,圆锥的高有几条?

【活动二】测量圆锥的高与圆柱和圆锥的区别

学习方式:动手操作、讨论交流

学习任务

1、出示圆锥形教具,引导:像这样的物体,它的高看得见吗?看不见怎么能知道它高多少呢?你有办法吗?

2、小组讨论,动手合作测量圆锥体的高。

3、汇报测量的步骤及测量结果。

4、课件演示测量高的过程,注意:测量时,圆锥的底面要水平地放;上面的平板要水平地放在圆锥的顶点上面。

5、猜测:一个长方形通过旋转,可以形成一个圆柱,那么你们知道绕一个直角三角形的直角边旋转,会形成什么形状?

6、动手操作转动一根贴有直角三角形硬纸的木棒。

7、说说各自的发现。

8、交流圆锥和圆柱的联系与区别。

提问:圆锥和圆柱有哪些相同点,哪些不同点?

相同点不同点形体底面形状侧面底面个数侧面展开高圆柱圆形曲面2个长方形无数条圆锥圆形曲面1个扇形1条三、达标测评

1、完成课本第32页的做一做。

先让学生在教材的几何图形上标出圆锥的底面、侧面和高,再利用实物投影进行交流。

2、完成课本第35页练习六的第1题。

投影出示课本上各个物体的图片,指名说说每个物体由哪些图形组成。

3、完成课本第35页练习六的第2题。

先让学生在课本上连一连,再进行交流。

四、课堂小结

通过这节课的学习,你有什么收获?

板书设计:

圆锥的认识

顶点:1个

面:2个侧面(曲面)底面(圆)

高:顶点到底面圆心的距离(只有1条)

六年级上册数学《圆的认识》教案 篇5

教学目标:

(1)掌握圆的特征以及圆的各部分名称;初步学会用圆规画圆。

(2)初步体会通过观察事物获得猜想,通过验证得出结论这样一种研究问题的方法。

教具:圆规、直尺、小球、圆形纸片、磁铁、双面胶。

学具:圆形物体、白纸、水彩笔、直尺、圆形纸片。

教学过程:

一、初步感受。

(1)自然界中的圆

同学们,我们已经初步学习了圆。今天我们进一步认识圆。(板书:圆的认识)你知道吗?自然现象中也有很多圆,你们看这是光环,这是水纹,这是向日葵。这些都很美。

(2)生活中的圆。

在日常生活中你见过哪些圆形的物体呢?你能举几个例子吗?

(圆形的钟面。)

(圆形的光盘。)

(圆形的瓶盖、圆形的茶叶桶盖等)

*注意纠正学生的语言(篮球不是圆,它是球,不过它的切面是圆形的。)

车轮是圆的。这是车轴,这是钢丝。(电脑演示)

小结:似乎圆在生活中随处可见。有的物体做成圆的是为了美观,而有的做成圆的,就有一定的道理,象这种自行车的车轮就一定要做成圆的,这是为什么呢?其中有什么道理呢?下面我们就用自行车车轮为对象来研究、探索圆的特征。

二、探索圆的特征。

1、画车轮简图。

(1)抽象

为了便于研究,我们把车轮进行简化。(电脑演示抽象化处理)

(2)画图。

这是一个车轮简图,你能很快地画一个车轮简图吗

拿出一张长方形纸用桌面上的一些工具或物体(圆形物体、圆规、水彩笔和尺),很快地画一个车轮的简图。(展示4-6个。)

你是怎么画车轮上的圆的呢?

(依靠圆形物体画圆)

(直接用手画圆)

(用圆规画圆)

(3)介绍圆规画圆。

圆规是我们常用的画圆工具,用它来画圆,比较正确和方便。那我们先来认识圆规,它有两只脚,一只脚有针尖,另一脚可装铅笔尖。怎样用圆规规范地画圆呢?

(1)先把圆规的两脚分开,定好两脚间的长度。

(2)把有针尖的一只脚固定在一点上。

(3)把另一只脚旋转一周,就画出了一个圆。

如果圆规的两脚之间的距离大一点,那画出来的圆就(大),那这样画出来的圆就(小)。

你会了吗?请你拿出另外一张纸,用圆规画一个大小合适的圆。

2、原型启发,进行猜想。

(1)观察、比较。

同学们画出了大小不同,颜色各异的车轮简图,请你仔细观察,这些图形有些什么共同点?你能根据这些共同点,猜想一下:圆可能会有哪些特征呢?

请把你的猜想和同桌交流一下。

(2)交流、汇报。

你有哪些猜想呢?

(圆形物体可以滚动,没有角)

(圆都有一个中心)

(圆的中心到圆的边缘的距离相等)

(3)小结:

刚才我们猜想圆可能有这样一些特征,但这只是猜想,到底对不对呢?我们还要通过进一步思考和验证啊。

3、验证

(1)下面我们来验证一下。

先来验证第一个猜想。

你感觉圆会有中心吗?

会有有几个中心呢?

会有两个中心吗?

圆的中心在哪儿呢?

你能准确地找到这个圆形纸片的中心吗?

请大家拿出事先剪好的圆片。自己想办法来找一找。

找到了吗?你是怎样找到的呢?

(用尺量的。)

(用圆规找的。)

(用对折的方法找的。)的确,把这个圆反复对折几次,获得了一些折痕,这些折痕的交点就是圆的中心。

圆中心的这一点就是我们用圆规画圆时针尖的位置,也叫做圆心,用小写字母O表示。(圆的中心改成圆心)。

(3)下面我们来验证第二个猜想。(圆的中心到曲线上的距离相等)

因为圆的中心叫圆心,所以这个猜想也可以说成圆心到曲线上的距离相等。

这里的曲线上我们给它个名称叫圆上。(改成圆上)

圆心到圆上的距离相等。

这点在圆上吗?(在圆上);这点在(圆上),这点在圆上吗?(在圆外);这点在圆上吗?(在圆内);这点在(圆上),这点在(圆上),圆上到底有多少个点?(无数个)。

那我们要验证这个猜想,不就是要验证圆心到圆上任意一点的距离都相等吗?(板书加任意一点)

真的都相等吗?

你能验证吗?(请同学拿出刚才的圆片,自己想办法来验证一下。)

巡视(你是用量的办法,那你多量几条,增强点信心,把每条的长度记下来。)

学生介绍验证的方法。

量的方法;

折的方法。

你折了几次?

折了4次,现在有八条线段等相等了,那我再折一次呢?(16条)再折一次呢?(32条)我再折一次,再折一次,再折一次,折无数次呢?(无数条从圆心到圆上任意一点的线段都相等了)这样,我们就能确定这个猜想是对的了。

(4)小结:刚才我们通过试验验证了猜想是正确的,这样我们通过对车轮这个具体事物的仔细观察,获得一些猜想,再通过验证,从而证实圆确实有这些特征(板书:验证),得出了结论,这是一种重要的研究方法,同学们要仔细地体会掌握。

4、进一步体会圆的本质。

下面我们来做个游戏,进一步感受一下圆的特征。

(1)线上的小球转动。

我这儿有一个小球,系在一根线上,如果我捏住线的一端进行转动,假设手的位置不动,小球划出的图形是什么?

我们用电脑模拟。

(2)橡皮筋上的小球转动。

我这儿还有一个同样的小球,系在一根橡皮筋上,同样来转动,看看这时小球划出的图形是什么?

我们用电脑模拟一下;

小球划出的是什么图形?

(电脑演示)是圆吗?

为什么第一小球划出的是圆,第二个小球划出的就不是圆呢?

(因为第一个小球在转动时,手和小球的距离是始终保持不变的,所以划出的是圆。而第二个小球在转动时,手和小球的距离是在变化的,所以小球划出就的不是圆。)

小结:通过这个小球游戏,我们进一步感受了,在一个圆中,圆心到圆上任意一点的距离都相等,如果距离在变化,那小球划出的就不是一个圆。

5、认识半径、直径。

刚才我们认识了圆的特征,那数学家又是用哪些概念来描述圆的呢?请同学拿出教材,自学书本P116页到117页。看书的时候,你可以把重要的概念划一划、圈一圈、书后的问题可以试着想一想,答一答,有不懂的还可以问一问。

有哪些概念啊?

什么是半径?半径的两个端点在什么地方啊?那你在圆片上画一条半径,用小写字母r表示。

有几条半径呢?为什么?这无数条都相等吗?

什么直径?那你在圆片上画一条半径,用小写字母d表示。

有几条半径呢?为什么?这无数条都相等吗?

直径和半径之间有什么样的关系呢?

判断直径(电脑演示)

5.判断题:

(1)从圆心到圆上任意一点的距离都相等。

(2)所有半径都相等,所有的直径也相等。

(3)半径3厘米的圆比直径5厘米的圆要小。

(4)直径的两个端点在圆上,那么两个端点在圆上的线段就是一条直径。

三、解释与运用。

大家学得很好,你能用今天学到的知识来解释:自行车车轮为什么做成圆的吗?

为了更好地解释这一现象,我们来做一个对比实验。

现在有两种自行车,一种车轮做成圆的,另一种车轮做成椭圆的,来看他们的运动情况。

请大家想象一下,你坐在这两种不同的车上,会有什么不同的感觉?为什么?

(因为第一种车上,车轴到地面的距离不变)

(在第二种车上,车轴到地面的距离在变化。)

为什么在圆形车轮中,车轴到地面的距离始终不变化?

(因为在同一个圆里,所有的半径都相等。)

看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

请你能运用今天学到的知识用圆规画一个直径4厘米的圆,并标上圆心,直径和半径。

《六年级上册数学《圆的认识》教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“六年级上册数学教案”专题。

文章来源:http://m.jab88.com/j/130574.html

更多

猜你喜欢

更多

最新更新

更多
; i++) { art[i].style.height = "auto"; }; }