现在,有请阅读88教案网编辑推荐的《小数乘整数教学反思简短》。成功偏爱那些提前做好准备的人,准备教案是教师的职责之一。一份优秀的教案也是教师展现自我教学水平的一种方式。希望能为你提供更多的参考!
本节课的内容是在学生掌握了整数除法计算的基础上进行教学的。教学的重点是引导学生理解并掌握小数除以整数的计算方法,难点是理解商的小数点定位问题。
成功之处:
1.紧紧围绕知识衔接点,唤醒学生对整数除法计算方法的回忆。在教学例1中,先让学生按照整数除法算出商,让学生进一步熟悉整数除法的计算方法,然后再解决小数点的问题,重点讲清商的小数点为什么要与被除数的小数点对齐的道理。
2.强化小数除以整数的计算方法的过程。让学生不要受被除数的小数的影响,首先按照整数除法去除,再处理小数点。在教学例2中,主要让学生思考如果有余数怎么计算,学生通过已有知识经验能够找到解决问题的办法,也就是如果有余数,要添0再除,为学生学习新知扫清知识障碍。在教学例3中,继续联系例1的教学方法,先让学生算出56除以7的商,重点让学生知道8应写在什么位置,为什么要把商写在十分位上,然后再处理小数点,依然按照商的小数点要与被除数的小数点对齐,最后再考虑整数部分不够除,商0。
不足之处:
通过作业的反馈,学生主要存在以下问题:
1.忘记点小数点。
2.忘记写单位名称。
3.计算出错。
4.商中间有零的忘了写零。
再教设计:
训练学生认真做题的良好习惯,特别是忘记写得数、忘记写单位名称等普遍性错误,减少不必要的失误,注重强化小数点、规范做题、认真书写,养成验算的好习惯。
本节课是小数和整数相乘的第一课时,主要目标就是让学生掌握小数和整数相乘的方法并熟练运用之解决一些实际问题。学生的知识准备是整数和整数相乘的方法及小数的意义。本节课主要是在此基础上探索出小数和整数相乘积的小数点点在哪儿,从而解决本节课的教学目标。本人上此节课时先导入,出示场景列式0.8×3和2.35×3,问与以前学的乘法有什么区别,很容易引出了新课,小数乘整数。而后着重解决0.8×3的计算方法。让学生想一想根据以前的方法计算出结果,方法一根据乘法的意义,得出是3个0.8相加,从而可以加出2.4,方法二把0.8元化成8角去计算,然后再换算回来,也是2.4(元)。然后提出每次这样算都太麻烦,可以像整数乘法那样用乘法竖式计算,竖式的计算结果肯定是2.4,至于为什么计算结果是2.4,教科书没有给出明确的算理,只是根据上述的两种方法证明了结果是2.4,而老教材的算理是把0.8扩大10倍,然后再把积缩小10倍。于是我找了一些录像资料,都是根据小数的意义来计算的,即:0.8是8个0.1,乘3就是24个0.1,所以就是2.4。这样很明确。于是模仿之,也这样做了。所以也就产生了如此的疑惑,不知究竟是否需要这样的算理,是否把此段省掉就直接进入2.35×8,然后进入下一个进程,用计算器探索积的小数位数与因数中小数位数的关系。
课没上完就下课了,现在回想,真是不应该啊。现在反思为什么会这样呢?原因有二:其一是让学生说算理时让他们根据自己的理解用自己的语言说得时间太多,听完他们的发言后我明白他们说得是什么并且也知道他们的理解是完全正确的(其他人不一定听得懂),而且这种情况延续了好几个同学。不知道大家是否有这样的感觉:以前自己在学生时代学的数学公式已经所剩无几了,当时学习时是会的,不然考试也不会考好。记忆中有一个老师曾经对我们说过,真正理解的东西是永远也不会忘记的,而我现在忘记了,那就是当时没能真正的理解。其中有一些公式虽然忘记了,但是自己却能推倒出来,这也许就是真正的理解了吧!新课标上说要延长学生的非形式化的语言,以便让学生真正的充分的理解而非人云亦云似的不理解的记忆、运用,然而这样在课堂上确是很花时间的,不知这种非形式化的语言所用时间占多大比例为宜(小班化那是最好不过了);其二是自己设计的问题不够精炼,这一点会在以后的教学中改进的。此次不顺也许就是未能充分的吃透教材导致的。
再有,就是学生的回答与教师的预设不一致,比如学生在说0.8×3方法二(把0.8元化成8角去计算,然后在换算回来,也是2.4)时,他直接说把0.8看成8来算的`,而教师需要的是他说把看成0.8角来算的。由于未能考虑到如此的情形,就硬生生的把他的说法改成8角。专业成长是个经验积累的过程,只是这个时间能否短点呢?
本节课是小数和整数相乘的第一课时,主要目标就是让学生掌握小数和整数相乘的方法并熟练运用之解决一些实际问题。学生的知识准备是整数和整数相乘的方法及小数的意义。本节课主要是在此基础上探索出小数和整数相乘积的小数点点在哪儿,从而解决本节课的教学目标。在本节课的教学中,我打破了枯燥的传统叫法,把数学教学与学生的日常生活经验联系起来,发挥了本班学生的特点,大胆尝试新教法,取得了较好的效果.
一、搜集生活中的数学素材,调动学生的积极性,提高学习数学的积极性,提升学习数学的兴趣。课前,我安排学生到各大超市做调查,收集小数,发票等,使学生学习的数学更贴近生活,贴近实际。让学生知道数学从生活中来。
二、从学生的生活经验和已有的知识背景出发,提出一些有针对性的问题,始终在生活中学数学,如:当教学小数位置变化这一部分内容之时,我利用书中原始的教学情境提问:如果1枚纽扣5分钱,那么10枚纽扣需要多少钱?100枚呢?学生对于元,角,分之间的进率掌握的已经相当不错,另外,这也是生活经验啊,所以,学生易于明白,易于发现规律。
另外,在本部分的教学过程之中,我倡导小组学习,在学生的质疑,讨论,交流中发现问题,搜集问题,解决问题,真正经历了探究的过程,真正把生活中的数学带到了课堂中来,使数学教学活动成了教会学生学,师生合作探究,发现的过程。
经过此单元的教学,我找到了自己在教学中存在的问题,也为我在下一部分的教学提了一个醒,使我越来越认识到:没有精心的备课,就没有高效的课堂。
这节课是小数乗整数的第一课时,主要是让学生理解小数乗整数的意义,掌握小数乗整数的计算法则,培养学生主动获取新知的能力。为了能让学生轻松的掌握新知,我努力的做到了以下几点:
一、复习了整数乘法的意义及整数乘法中由因数变化引起积的变化规律,为学生学习“小数乘整数”做好了铺垫,尤其是掌握了积的变化规律,为学习小数乗整数的算理有很大的帮助。
二、创设了一个“购买风筝”的情境,从而激发了学生的学习兴趣。在解决实际问题中自然的引出了小数乗整数的学习内容,使学生感到亲切自然,学生在浓厚的兴趣中探索新知。
三、在学习过程中,我注重学生的独立思考,如解决实际问题时,我让学生小组合作思考交流解决的方法,在师生的交流学习中,让学生充分的表达自己的观点与计算方法,从而得到许多有创造性的解决办法。然后在老师的启发引导下帮助学生较好地理解小数乘整数的算理及方法。
总之,这节课更关注学生的学习过程,在思考交流的学习中,给不同的学生思维发展的空间,促进了学生的发展。
这是践行“先学后教”教学模式的第一课,虽然课前已经做了充分的准备(课件,小黑板,该做的做了,改写的写了)但课上还是感觉很乱很乱。
其一、教学设计上的问题。
1、学法指导跨越幅度太大,多数学生看着学法指导却不知道自己该干什么。
2、内容含量大。两个例题放在一节课,如果是以前的教学方法,时间会很充裕,完成两个例题及相关练习不成问题,可因为实行新的教学模式,孩子们还找不着门道,所以浪费了很多时间,任务没有完成。
其二、学法指导上的问题。
新的模式学生不了解,不知道老师又在耍什么花招,茫然中似乎还在等着接招,却不知学习任务已经布置下去,很多学生倍感茫然,手里端着书,眼睛盯着学法指导,不知道该怎么办。这不仅反映出学生没有自学能力,也说明我在备课时对课堂预设不够,没想到孩子们会如此茫然,如果课前交代一下在这种教学模式下,他们该怎么做,效果会好一些。
其三、实行过程中的问题。
因为陌生,所以各个环节都显得时间不够用,十五分钟仍然有部分同学没有完成自学任务(有的同学一节课也未必能完成),在检查自学效果时,让后进生汇报,再让后进生更正,因为我对学生不熟悉,在学生自学老师巡视时关注不到位,以至于在汇报环节浪费很多时间。利用小组合作,对“小数乘以整数”转化成“整数乘以整数”说理过程落实还可以,但当堂训练环节因时间关系,完全取消了。
虽然下午又利用一节专科课(停了)对小数乘以整数这部分知识进行了补充,但学生究竟会了多少,我心里没底。上完课心里如此没底(尤其是数学课),好像还是第一次。
一、创设情境——激发兴趣
由于计算教学往往与学生的生活实际相脱离,所以学生对计算内容的学习缺乏热情和兴趣,对计算的练习备感枯燥。因此,提高学生对计算学习的兴趣在教学中更显重要。在教学时,我就利用课本上的主题图创设情境,激发学生的兴趣,让学生帮助图中的小朋友解决问题,学生的学习兴趣倍增。这样,学生在探究用新的方法解决自己的问题,理解与掌握小数乘以整数的计算方法。
二、充分发挥学生学习的主动性
课程标准指出:数学教育要面向全体学生,实现:人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展。由此可见,在数学教学活动中,学生才是数学学习的主人。如何使数学课堂教学科学化,使其既能达到培养学生基本素质的教学要求,又让学生产生一种强大的内趋力去主动探索数学的奥秘。作为数学学习的组织者、引导者和合作者,教师在教学中应积极营造民主、快乐的氛围,创设问题情境,让学生通过动手操作、自主探索、实践应用等主体活动去参与数学、亲近数学、体验数学、"再创造"数学和应用数学,真正成为数学学习的主人。因此,我在例题教学时采放手让学生利用自己已有的知识和经验解决主题图的问题,重点说明将元转化为角的方法。培养了学生的独立思维的习惯,慢慢引导学生学会知识的迁移。学生的课堂表现基本做到了自主解决问题。
三、巩固方法 体验成功
在完成例1的情况下,让学生脱离具体量,直接引出小数乘整数。出示例2,
用因数与积的变化规律说明将小数乘整数转化为整数乘法的理由。根据计算结果,说明如果积的小数末尾有0,根据小数的基本性质,用最简方式写出积,积中小数末尾的“0”可去掉。最后进行专项练习,巩固新知。
整一节课能让学生解释自己的思路,充分体现学生的主体地位。注重学生对思维过程的表述能力的培养。但是,存在着一些问题:
(1)进入主题图后有点匆忙,应让学生充分观察主题图。
(2)算理用的时间太多,导致练习太少。在以后的教学中将在这些方面多加注意及做出相应的调整。
除数是整数的小数除法是第三单元例2例3的新授课,第三单元在五年级教材中所占比重比较大,小数除法整体对学生来说也有难度,但还好是在学生学习了整数除法的基础上来加深的,而王老师这节课所讲条理清晰,算理分析得也很透彻。
上课伊始,王老师以复习四年级所学的小数的性质直接导入,这个来说对学生不难,小数的末尾填上0或去掉0,小数的大小不变。继而大屏幕出現了一组口算题,以开火车的方式要求学生口算结果。由这样一个环节,我发现大部分学生的口算的能力还是比较好的,联想到自己的学生在口算方面还比较欠缺,需要我多投入些精力在此方面提高。复习环节之三就是指名学生上黑板上笔算上节课的旧知。此环节有利于下面更好地吸收新知识,并且随时提醒学生注意:商的小数点要和被除数的小数点对齐。继而引入例题:王鹏的爷爷计划16天慢跑28km,平均每天慢跑多少千米?李老师让学生齐读例题,并要求学生自己先列式计算,写完的学生把自己的想法和同学交流一下,看你遇到了什么困难?根据题意,学生很快列式:28÷7在列竖式计算式,学生发现了商是1余12,这时李老师发问余数是12怎么办?引导学生懂得把12个1变为120个十分之一,120里有几个16?商应写在哪一位上?还有余数怎么办呢?引导学生发现继续添0接着除。
本节课的新授还有一个知识点是在例3,王老师在讲例三时没有花费太多的时间,主要重点是在于让学生发现:整数部分小于除数,不够除,用0来占位,继续除。
在新授的小数除法的两种情况后,王老师总结学生回忆,当我们除到被除数的末尾还有余数怎么办?因为两种情况要牢记,遇到这样的情况就要对号入座。那我们怎么オ能知道我们的计算结果是正确的呢?学生异口同声地回答:验算。
老师要在日常训练学生的过程中使学生养成检查的习惯,通过验算才能知道你的计算是否正确,这一习惯要贯穿于小数除法学习始终。最后在新授结束练习现固,通过课后做一做的题让学生在学习新知识之后趁热打铁加深方法记忆,这有利于学生之后更加松地应对类似提醒,轻松学数学。
上了《小数乘整数》这节课,感觉有亮点也有明显的不足,亮点是在探究积的小数点与乘数的小数点关系时的教学片段:
【片段回顾】
例题教学过后,
师:刚才大家在讨论小数乘法的算理时有这样一个感觉,小数乘法的一个关键是小数点的确定,那请大家观察这两个乘法算式,猜想一下积的小数点可能与什么有关。
学:乘数里有几位小数,积就有几位小数。
师板书:乘数里有几位小数,积就有几位小数?
师:这只是一种猜想,所以我们暂时只能打上问号,那如何来证明发现的规律是否正确呢?
生:要举例来证明。
师:该如何举例呢?谁先来试一下。
生:老师,我举一个例子就能证明这个规律是错误的。
师:请你说一说。
生:1.25=6,小数位数是一位,乘积是整数,所以我认为刚才的猜想是错误的。
师:是真的吗?(故作惊讶,环视教室)
稍停片刻,听到教室里响起了两种不同的声音:是的!不是!
师:老师听到了两种不同的声音,说是的的同学一定和这位同学想的一样,说不是的同学一定有自己不同的想法,谁愿意来说一说。
生:我觉得1.25=6,这里的积本来应该是6.0。
师:为什么这样说呢?
生:1.2是12个0.1,12个0.1乘5就是60个0.1,60个0.1是6.0。
师:说到这里似乎明白了一些了,老师把这个过程写下来。这样的话乘积6.0还是几位小数?
生:一位小数。
师:那又为何说等于6呢?
生:因为小数末尾的0去掉后小数大小不变,所以将6.0写成6了。
师:对,按照小数的性质,我们可以将6.0写成6,但是我们在探究这个规律的时候,我们还是需要将这个0保留下来,这样才便于我们探究新知。大家明白了吗?
生:明白。
师:那请大家每人举一个例子来验证一下,刚才我们的猜想是否正确。
【教学反思】
本环节的设计是在意料之中,所以当学生出现质疑之时,能有效进行点拨引导,使之能顺理成章地完成探究之路,得到令人满意的结果。
同时又由于过分关注探究这一环节的设计,而将不少课堂时间用在这块上,致使对于小数乘法的书写格式,却有些疏忽了,导致作业反馈中出现有部分学生还是用数位对齐的方法来写两个乘数。这也是对自己课堂教学计划执行能力的一次质疑。
问题产生的原因剖析:
1、 课前准备不够充分,没有从学生认知心理的角度出发,从备课中就充分重视原有知识技能对学生学习新知识可能产生的干扰,即负迁移的作用。本课的负迁移影响来自于小数加减法的书写规则(数位对齐)。凭当时(课堂上)学生的板书和巡视(不够全的情况下)过程中没有发现这一问题,就忽略了问题的存在。就没有把这个问题作为重点来抓。致使问题没有暴露,而使问题遗留到课后。
2、忽视了对部分后进生学习状态的密切关注,不可否认,比较喜欢和优等生的对话,因为精彩总是出自于他们,奇思异想也往往出自于他们的智慧,与他们的对话更能激发一种课堂教学的热情。而面对后进生,虽然有百般的耐心,虽然总是尽量把更多的目光集中到他们身上,将更多回答问题的机会留给他们,脚步更多地在他们身边停留。但总是有疏忽,这也是老师最感难以掌控的地方。总是希望时间能充足一些再充足一些。总是希望有几张嘴可以同时和不同的学生对话。但是希望总是希望,遗憾总是伴随着。
常言道,优秀的人都是有自己的事先计划,教师需要准备教案也是每位教师的必修课。教案能帮助老师解决在课堂中教什么,怎么教的问题,根据您的需求编辑为您整理了以下相关信息:“分数除以整数教学反思简短”,请阅读后分享你的朋友!
分数除以整数教学反思:一文支持一种观点:没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。
数学课上老师“把所有的问题都自己扛”,而学生依旧是“剪不清,理还乱”,作为教师我们是否应尝试另一种途径:鼓励学生大胆动手尝试,引导学生自己寻求解决问题的方法。
小学数学第十一册中有这样一课《分数除以整数》,在分数除以整数的法则推导过程中,教科书以线段图帮助学生理解。也许是线段图总是与数学联系在一起,所以学生对它没有太大兴趣。在教学中,我插入了一个操作题,让学生在动手操作中,去自己发现总结法则,尝试着象数学家一样去不断发现探索,结合计算机课件的使用,学生的学习兴趣立刻得到提高。
准备三张同样大小的长方形纸,把这三张纸都平均分成3份,其中两份涂上阴影,
(1)把第一张纸的2/3,平均分成二份,怎样折,每份是原来这张纸的多少?你能列出算式,并根据折纸求出答案吗?
(2)用折纸的方法求出2/3divide;4、2/3divide;6的答案。
(3)在折纸操作中,你发现除法算式的结果是怎样得到的?
在同学们自己动手操作、小组合议的基础上,得出了分数除以整数的计算法则。这个法则不是教师讲解的,不是书本提示的,而是同学们在自己的动手操作中,借用已有经验自己发现,总结出来的。看来每位学生都有成为数学家的天份,就看教师能否带动学生,让学生自己去体验数学符号的内涵。
同样也是“做数学”,我校张秋菊老师的一节“角的度量”课,更让我体会到“做”的重要。她改变了原有的教材呈现方式,在“做”数学中体验知识的产生与发展。
本节课原教材是先让学生认识量角器,告诉学生什么是角,再教给学生如何测量角度的大小,最后告诉学生角的大小与边的长短无关。旧教材老师教知识,教方法,学生被动接受,张教师转变了教材的呈现,让学生在“做”中体验学习的方法,知识的生成。
张老师在教学从“用扇子折角”开始,带给学生一个有趣的、需要思考的问题情境,使学生在自然的情境中生成学习的兴趣与动机,教学中的这种现实情境是学生在自己的生活中能见到的,听到的,感受到的,也可以是他们在数学或其他学科学习过程中能够思考或操作的,属于思维上的现实。
面对着情境中已生成的数学问题,老师并不忙于告诉学生答案,而是让学生在一次次折角中知道90deg;45deg;30deg;15deg;角。再试着折一个角,学生在求解遇到了困难,此时用电教媒体来解决角的问题。在这个过程中学生经历了求解的过程,给学生思维的空间,在老师的帮助下自己动手动脑“做”数学,用观察、模仿、实验、猜想等手段获得体验,从而学会运用数学解决生活中的问题。
这两节课都体现了以下的特点:
⑴强调动手实践活动,从周围生活选取活动材料。
⑵在强调知识学习的同时,更强调对学习方法、思维方法、学习态度的培养。
⑶提倡合作学习。
在美国国家委员会的《人人关心:数学教育的未来》的报告中有这样一句话“实在来说,没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。”学生不仅要用自己的脑子去思考,而且要用自己的眼睛去看,用自己的耳朵去听,用自己的嘴去说,用自己的手去操作,在用自己的身体去亲自经历,同时,用自己的心灵去亲自感悟。在操作、实践、考察、探究、经历过程中,去自己发掘新的知识,新的规律,也许这些发现是幼稚的,但这必竟是孩子们自己的一次尝试性的探索,无数次的这种探索才能使学生渐渐的体会出数学奇怪符号所代表的意义与哲理。这正是《新课标》中提倡的“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。这种“做数学”的方法,把以定型化、定量化写在书中的无味数学知识,还以丰富的思维过程,将数学课本激活,使之恢复活性和灵性。把古板的定义变得脉脉含情,把艰深的算理变得平易近人,把枯燥的计算变得丰富多彩。通过学生自己的努力,实现了数学思维的再现,弥补了课本的不足,还学生以生动、精彩、充实的数学。
《分除以整数》,这课时其实上的相当失败。这一节课最主要就是要学生经历总结规律和探索分数除以整数的计算方法的过程,掌握分数除以整数的计算方法,能运用分数除以整数的计算方法解决简单的实际问题。教学重点是理解分数除以整数的含义,难点是掌握分数除以整数的计算方法。
在教学过程部分,我设计了两个复习导入,分数乘法,说出各数的倒数。这一部分存在的问题时,分数乘法的练习量有点过大,在说出各数的倒数,我重点放在如何将带分数转化为假分数。在教科书上出示的例题中,通过把4/5张纸平均分成两份,求其中的一份是几分之几?我给学生准备好了一张长方形的纸条,我已经把这张纸平均分成了5份。学生很容易就能表示出4/5,也列出算式,4/5除以2。
但是在折纸部分,存在两个问题,同桌小组合作折纸,有点流于形式,同桌之间交流较少。折纸结束后,我给学生留的说一说的时间比较少,我应该让学生多说一说,你是怎样折纸的?通过折纸过程,如何写计算过程?我引导的太多,导致,学生学习比较被动的接受知识。在引导学生理解4/5除以2,就是把4/5平均分成2份,取其中的一份,就是相当于4/5的1/2.在这一部分,我认为应该在导入部分,增添,说一说5/6乘以6/1的意义。这样学生再通过折纸就可以容易理解分数除以整数计算方法的算理。这也是设计中最失败的部分,没有考虑到学生对前面学习的分数乘法意义,其实有一些淡忘了。通过三次折纸,观察两个算式,总结计算方法。其实在归纳总结这一部分,我发现其实只有少部分学生,才能发现一些规律和计算方法的。我对于这一部分,通常是在少部分学生发现规律之后,先让学生齐读,再找出关键信息去理解规律,再通过举列子巩固找到的规律或者计算方法。这一课时时间也没有把握好,导致后面巩固练习的时间不够。
总的来说,这是一节失败的课,言简意赅的说自己的问题是,引导太多,没有体现学生的主体性,在预设中,应该更多考虑学生已有的知识经验,有时候还是要多相信学生,多给学生思考多给学生交流的时间。后续我会在练习讲解的时候,再发现学生存在一些什么问题。
分数除以整数是学生学习了分数乘法和认识了倒数的基础上进行学习的,学习之前已掌握了分数乘分数的计算方法,为本节课的新知学习起到了良好的铺垫作用。在教学中我注重以下四点:
一、强调知识的迁移和类推
在教学中,我先复习整数除法的意义,再进行分数除法意义的教学,因为这样可以使学生利用知识的迁移和类推得出分数除法的意义。
二、以自主探索为主
提供给学生自主学习的机会,给学生充分思考的空间和时间,允许并鼓励他们有不同的算法,同时也尊重他们的想法,哪怕是不合理的,甚至是错误的,让他们在相互交流中碰撞,让他们在讨论中进一步明确算理。
三、重视学习方式的培养
在教学实践中,基于学生的知识现状,学生回答问题时,出现语言组织不严密,方法不够全面,这时我又引导学生借助图形进行题意分析、算法探究,总结出分数除法的计算方法。
四、利用计算方法进行技能训练
在练习环节中我设计了较有层次的,从直接计算结果的基础性练习,到解决简单的数学问题,再到自主运用本节课知识解决生活中的实际问题,有坡度地让学生运用分数除法的计算方法解决问题,让学生进一步熟悉计算方法,让学生学有所用,学有所值。
本节课的教学旨在突出算理的理解和算法的掌握。在重点的学习上,利用学生已有的知识经验,通过情境创设,让学生回忆整数除法的意义,并迁移到分数除法中;难点教学时通过图形结合帮助学生直观、透彻地理解算理,学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,进一步诱导学生经历从特殊到一般的探索过程,从中悟“把一个数平均分成几份,就是求这个数的几分之一是多少”。
首先,利用学生已有的知识经验,创设问题情境,让学生回忆整数除法的意义,并迁移到分数除法中;
然后,设置问题情境,让学生先猜测分数除以整数的计算方法,再集体验证计算方法;通过折一折、涂一涂等动手操作活动,把抽象的知识具体化,在直观认识中理解算理,明确算法,从而学生领悟“把一个数平均分成几份,就是求这个数的几分之一是多少”,的'意义。
练习设计,由易到难,层层递进,在情境中应用知识解决问题,思维得到拓展,知识得到提高。 在巩固应用环节,通过在情境中笔算、解决问题、思维拓展这样具有层次性的练习题,使学生不仅在计算中巩固并熟练掌握计算方法,而且思维能力得到培养。整堂课我倡导以学生自主探究为主线,将把更多的时间、空间留给学生,充分调动学生的主体参与,让学生在积极主动的参与、探索中发现知识;鼓励学生采取多样化计算,使学生在不同思维,不同方法,不同角度的认识中解决问题,领悟知识,形成自己知识体系。当学生总结出算理之后,让学生通过小组交流、同桌交流、师生互动等多种形式,强化知识在学生头脑中的形成。
本节课的教学活动充分体现了《数学课程标准》提倡的基本理念。在知识的探究过程中,教师引导学生经历了“猜想---验证---比较---抽象---概括”的过程,
课堂教学活动以学生为主体,师生共同参与,协调互动,形成了民主、融洽、开放的课堂氛围。
1、本节课能够从学生的生活实际出发,使数学知识与学生生活实际有机地联系起来,使学生的感觉到数学就在身边,感到了数学的亲切,从而有效地激发了学生的学习兴趣。
2、课堂的学习活动主要以学生的独立思考与小组合作学习为主。让学生在原有经验与知识的基础上进行自主、合作的探究学习,从而保证了学生充足的动脑思考的时间和空间,这样不仅有利于学生对知识的知其然而知其所以然,更有利于学生思维能力的训练和培养、有利于学生合作学习意识和能力的形成。
3、解决问题策略上鼓励求异思维,激发创新潜能。在探究整数除以分数计算方法的过程中,教师鼓励各小组的学生探讨用不同的方法求汽车1小时行驶的路程,结果学生在讨论的过程中,相互启发思路被打开,于是想出了许多种的解决方法,实在让我感到欣喜。这样既激发了学生学习的兴趣,又培养了学生的求异性思维能力。
4、能在正确理解《数学课程标准》基础上,结合教学内容有效地让学生实施“猜想---验证”,从而让学生又一次认识到数学知识的严密性,培养学生利用原有经验和知识进行合理猜想的意识和能力。
5、重视练习设计,巩固新知,解决问题。本课的练习设计有层次、有坡度,形式多样,学生练习有兴趣,练习效果好。
整个教学是成功的,具体表现在:学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对2的算法有了具体的认识,并且分析思考出分数除以整数的一般性计算法则。
(1)学习内容来自于生活。
这节课中,选择了生活中打毛衣用的红毛线,用它作为研究问题的着眼点,让学生主动地进行观察、猜测和思考,创设了富有挑战性的问题情景。看的出来,学生对红毛线的实际长度大胆地进行估测的过程,是极感兴趣的,参与的热情破高;教师借此,用分数表示这根红毛线的实际长度,并动手操作把它截成相等的两段,让学生提出数学问题,同时再一次让学生估计2的结果,充分体现了《新课程标准》要求的学生的数学学习内容应当是现实的、有意义的、富有挑战性的这一理念。
(2)解题方法来自于学生。
面对新知识的学习,不是教师去讲解,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对2的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不是唯一的。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。
我在仔细钻研教材的基础上,对教材创设的情景进行了适当的修改,以适应学生的自主探究。
首先,我用画图示意:把1米长的线段,平均分成了10份,然后取其中的9份,问得到的是多少米?学生回答了9/10米和0.9米2种答案,接着我出示问题:把一条9/10米的线段平均分成3份,每份是多少米?学生开始画图或演算。
[设计意图:使学生理解分数的意义,理解分数除以整数的意义,并能把分数除法与分数乘法有机地联系起来,最后还想让学生学会转化的数学思想。]
生1:9/103=93/10=3/10(米)
生2:9/10=0.90.93=0.3(米)
生3:9/103=9/101/3=3/10(米)
生4:9/103=9/103/1=3/10(米)
生5:9/103=27/1027/109=3/10(米)
师生共同分析每一种解答方法,师:谁能说明方法一的理由?生1:9/10表示有9段,所以把9除以3,得到每一份是3段,也就是3/10;生2:为什么10不要去除以3呢?生3:因为10表示的是整体;生4:因为10表示的是把整体平均分成了10份,我们在平均分成3份时,整体还是被平均分成10份的,所以分母不变。(同学们在讲解的时候,老师随着画出了示意图。)随着图示的演示,同学们都表示能理解这种方法。师:谁能解释第二种方法?生:因为我们没有学过分数的除法,但我们学过小数的除法,所以我把9/10化为小数,这样我就会做了。师:很棒,你们已经能通过恰当的转化利用我们学会了的内容来解决还不会的内容,这是一种很好的思维方法。师:能解释第三种方法吗?除法怎么会变为乘法的呢?生1:我们在把除法变为乘法的时候,同时把3变为了它的倒数。生2:为什么9/10就不变呢?你的这种变化的理由是什么呢?李响:因为把9/10米平均分成3份,每一份就是三分之一。生还是不很明白,黄钺虎:因为把9/10米平均分成3份,取其中的一份就是9/10的1/3,9/10的1/3是多少,我们可以用乘法计算来解决,9/101/3,除法算式的含义和这个乘法算式的含义是一样的,所以可以这样转换。(在同学讲述的时候,老师在线段图上示意,帮助学生理解。)师:请同学们仔细观察这种转换过程中,哪些是要变的?哪些是不能变的?生:除法变成了乘法,除数变成了它的倒数,而被除数是不能变的,只要照写就可以了。师:谁能解释第四种方法?大家都说是巧合,是凑出来的。我示意同学们让这位同学说说他的想法,这位同学说,他看到平均分成3份就去乘以3,结果发现不对,因为从图上看出结果应该是3/10,后来想到27/10只有除以9才可以等于3/10,所以就除以9了。(学生受到分数乘法的负迁移影响,这种迁移又和图形上的理解发生冲突,如何解决了?学生采用了杜撰的方法。)在老师和同学们的帮助下,这名同学懂得了自己的错误所在。师:第5种方法我们今天不解释,等我们学完了后面的知识再来研究这个方法。
我还没来得及往下讲,文盛迫不及待地站起来说:老师,我认为第一种方法和第二种方法不是最好的方法,你看7/133,用第一种方法和第二种方法就行不通了。老师和学生一道验证,同学们发现了问题:分子除以3得到了一个无限小数,第一种方法确实行不通;那第二重方法呢?同学们在实际计算中,又发现了7/13也不能化为有限小数,因此大家都同意文盛同学的看法,这个题只有用第三种方法来解决最合适,老师示意同学们用第三种方法来解决这个问题。就在同学们快速完成学习任务的同时,李响同学站起来说:老师,我发现当分数的分子除以分母可以得到一个整数时,第一种方法简单;当分子除以整数得到的结果不是整数时,第三种方法简单。师:你们真的了不起,不仅学会了方法,还能根据实际情况灵活选用。
教学反思:首先我深入了解了教材的编写意图,特别是从苏教版的教师教学用书上细致地理解了转化和把分数除法和分数乘法联系起来的教学思路,因此,我联想了学生已有的知识基础,对分数的认识和分数乘法意义的理解,由于我在学习分数乘法的教学过程中特别强调了对分数意义的理解和分数乘法运算的理解,因此我认为我的学生完全可以利用已有的知识把分数除法与分数乘法联系起来。同时,我又看到了一篇教学反思上,写到学生把分数转化为小数来解决,我认为也是比较可取的,因为它的出现说明了学生学会了转化的数学思想。想到这里,我决定对教材的情境加以修改,因为教材中出现的6/7是不好转化为小数的,它将限制学生的思维;同时,我还看到了一位老师借助分毛线的实物操作来帮助学生理解分数除法的意义,但我认为五年级的学生要实现从形象到抽象的过度了,因此,我想通过线段图又和实物紧密联系的思维模式让学生解决所遇到的问题。这样课一开始,我就出示了线段,并演示得到了9/10米的过程,加强学生对分数意义的理解,唤醒学生在学习分数乘法时储备了的知识,由于我的精心设计学生能凭借自己的努力,在解决问题的过程中,不断产生新问题,通过思维的交流和碰撞,学生深层次地理解了每一种计算方法和其中隐含的数学思想,而思维活跃的学生更是对方法的优劣进行评价,用实例说明优与劣的原因所在,让大家心服口服,还有的则能根据不同的情况来区别对待。我觉得他们是了不起的。就算是学困生也都借助图形语言理解了问题的答案,尽管他们的方法不是正确的,但他们有他们的思维过程,他们找到了自己出错的原因,所以我感觉这样的课堂大家都在努力,大家都在收获。而我所做的就是对问题的设计和对细节的引发思考。当然,我也遇到了一定的问题,如:是不是每个问题都给所有的学生留下了思维的时间和空间,肯怕是没有实现的;还有,学生出现的第5种方法,我没有及时给学生明确的答复,他们会有什么想法,他们会不会不理解甚至还会在练习中采用呢?这个问题又该如何处理呢?
一.教学设想
分数除以整数是分数除法教学的起始课。通过这一内容的学习可以为学生以后的学习打下坚实的基础。根据新的教学理念和学生的认知基础与年龄特点,在设计本课时主要突出以下几点:
⒈在注重算理和算法教学的同时,体现估算。
《数学课程标准》对计算教学有明确的要求,即淡化笔算、重视口算、加强估算。分数除以整数是学生继续学习的重要基础,在教材中占有重要的地位,但在现行教材中对估算意识的培养还未凸显出来。针对这一现象,我力求把培养学生的估算意识,发展学生的估算能力融入教学,在课堂上形成具体的教学行为,从而加以体现。
⒉以探索为主线,鼓励学生算法多样化。
学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。
⒊让学生充分评价和反思。
在教学过程中要引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。
二.课堂实录。
⒈直接揭示课题。
师:上节课,我们学习了分数除法的意义,并根据分数除法的意义能写出除法算式的商。如,那么有4=,到底怎样计算4呢?这节课我们就来学习分数除以整数。板书:分数除以整数
⒉创设情景,引出问题。
师:同学们,请看老师手中拿的是什么?
生:红毛线。
师:对(同时把这根红毛线贴在黑板上)凭借你的眼力,说说这根红毛线大约有多长?
生:(进行估计并说出数据)60厘米、75厘米、83厘米
师:你们的眼力真棒!离这根红毛线的实际长度就差一点,想知道它有多长吗?
生:(大声地说)想。
师:我用分数表示这根红毛线的实际长度:米。小数表示是几米?板书:米
师:如果把这根长米的红毛线平均剪成两段(教师用粉笔画一道),你能提出一个数学问题吗?
生:每段长几米?(板书:每段长几米?)
师:怎样列式?
生:2
师:教师板书:2问:你估计一下,2的结果是多少?
(教师找学生说)
师:下面,请同学们带着自己提出的问题来研究2怎样计算,并检验估计的结果是否正确。
⒊探究与交流。
⑴学生独立研究或小组合作研究。
⑵汇报交流
师:谁愿意到前面把你或你们研究结果展示给大家看?
生1:我是先把算式中的分数化成小数后再计算的,算式是:2=0.82=0.4(米)。
生2:我是通过画图的方法,知道每段长米。(图略)
生3:我的算式是2==(米)。我是这样想的:米是4个米,把4个米平均分成2份,每份是2个米,也就是米。经过验证2=,是对的。
生4:我是先根据商不变的性质将算式转变成整数除法后再进行计算的,算式是:2=410=(米)
生5:我是这样想的,把米平均分成2份,求每份是多少米,也就是求米的是多少,用乘法计算。列式是=(米)
师:有什么问题吗?
生:为什么2=呢?
(学生小声讨论,后有个别生举手)
生:我能用商不变的性质,把除数变成1就可以了。
师:你能把你的想法写出来给大家看吗?
生:我是这样想的2=()(2)=()1=
(教师组织学生感悟,确实学生明白了)
⒋分析与概括。
师:大家在计算2时,开动脑筋,想出了这么多的方法,对于这些方法能否计算分数除以整数这类题呢?谈谈你们的看法。
生1:我觉得把分数除法转化成分数乘法比较简单。
生2:我认为分数化小数的方法也挺简单的,但有时候小数不能化成有限小数如2。另外对于分子除以整数的方法也这样的。
生3:我同意他的说法,补充一点是用商不变的性质做题也不简便,所以这些方法都能解决问题,但很麻烦。
师:我同意大家的看法,其实画图也是一种好的方法,但有时候用画图的方法也是麻烦的。那么,在这些算法中你将选用哪一种方法计算分数除以整数呢?
生:(齐答)把分数除法转化成分数乘法做。
师:谁总结一下分数除以整数的计算方法是什么?用自己的话来概括。
生:分数除以整数,等于分数乘这个整数的倒数。
生:我补充一点,分数除以整数(0除外),等于分数乘这个整数的倒数。
师:这是一种较为简便、应用广泛的方法,但有时候也要具体问题具体分析,做题时要合理灵活地选择计算方法。
⒌质疑与反思。
师:对于这些方法,尽管大家的思维角度不尽相同,但是基本的想法是相同的,想一想我们是怎样解决问题的?
生:用学过的倒数、商不变的性质解决的。
师:对。用一句话概括就是运用旧知识解决新新问题。这是一种很重要的学习方法。
⒍实践体验(略)
三.课后反思。
整个教学是成功的,具体表现在:学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对2的算法有了具体的认识,且分析思考出分数除以整数的一般性计算法则。
反思整个教学过程,我认为成功的关键在于学生是通过自主探究获得知识的,具体分析如下:
⒈研究学生如何学比研究教师如何教更重要。
学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的教学基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学都有了足够的掌握。有了上面的分析基础,我觉得把研究新知识的权力教给学生,是完全可以的。
⒉对整个教学设计有了创新之举。
(1)学习内容来自于生活。
这节课中,选择了生活中打毛衣用的红毛线,用它作为研究问题的着眼点,让学生主动地进行观察、猜测和思考,创设了富有挑战性的问题情景。看的出来,学生对红毛线的实际长度大胆地进行估测的过程,是极感兴趣的,参与的热情破高;教师借此,用分数表示这根红毛线的实际长度,并动手操作把它截成相等的两段,让学生提出数学问题,同时再一次让学生估计2的结果,充分体现了《新课程标准》要求的学生的数学学习内容应当是现实的、有意义的、富有挑战性的这一理念。
(2)解题方法来自于学生。
面对新知识的学习,不是教师去讲解,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对2的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不唯一。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。
(3)评价与反思的过程,让学生有所悟。
学生从各自的数学实际出发,用不同的学习经验和知识基础,对2的探讨出现了多种不同的思维方式:有的学生将题目中的分数化成小数后再相除;有的学生利用商不变的性质将题目转化成整数除以整数后再计算;有的学生想到把分水除法转化成分数乘法进行计算,等等。当学生出现这些方法,教师要求学生把这些方法放在分数除以整数的背景下分析,课堂上学生确实具备了这样的本领,能够对每一种方法进行评析。在学生们的互相评价中,引发了对所学知识的更深思考,同时学生反思出这些方法都是运用旧知识解决的,教师并告诉学生这是一种很重要的思考方法。在这个过程中,学生能够体验和感悟到学习数学的科学方法。这对学生今后的学习和发展非常重要。
⒊进一步思考的问题:
探究的主体是学生,让学生通过自主探索、合作交流和动手实践获取新知识、学会学习是教师们共同认可的。但在教学设计和实施过程中如何找准教学的起点,如何给学生充分的探究空间,让学生在课堂上充分地进行研究、讨论和交流,从而获得真正的数学知识,同时使能力的培养、情感态度价值观都得到和谐的发展仍然是我们进一步探讨和研究的问题。
《分数除以整数》这节课的关键在于学生是通过自主探究获得分数除以整数的计算方法的。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的学习基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学生都有了足够的掌握,有了上面的基础保障,我觉得把研究新知识的权力交给学生是完全可以的。
整节课通过学生自己动手设计板书,上台展示,自我总结,发现方法,其中必要的操作是比不可少的。本节课中理解分数除以整数的计算方法的算理是这节课的重点和难点,学生经过动手操作,将实验中的图与式子对应起来,通过图形,学生直观感知了“4/5÷2”可以表示为“4/5里有4个1/5,把4个1/5平均分成2份,每份就是2/5,从而理解计算方法。同时也直观感知了”4/5÷2就是把4/5平均分成2份,每份是多少,可以理解为求4/5的1/2是多少,即4/5×1/2,真正理解“分数除以整数(0除外)等于分数乘这个整数的倒数“的计算方法。由于理解算理,学生能正确地掌握计算法则,课堂上表现在学生顺利完成4/5÷3的计算。
整节课,孩子们情绪比较激动,课堂纪律不太好,讲解的过程缺乏详细,只会照板书读下来,对于质疑环节,孩子们不太会提问,这在以后的课堂中要加以锻炼。
这是一节普通的计算课,为的是以平常的教学内容为载体,研究怎样体现“三维”目标。
1、知识与技能目标。
我认为,一节课,无论它采用何种教学模式,华丽也好,朴实也好,最基本的知识和学习的技能必须得传授下去。这节课重点是要求学生理解分数除法的意义和掌握分数除以整数的计算方法,课内和课后的学生反馈可见,这一目标得以实现。
2、过程与方法目标。
知识与技能通过什么途径让学生获得?就是过程与方法的实施。这需要老师提供机会,引导学生深度参与数学活动。我把例题的数据 改成 ,目的是提供更多的切入点,让不同层次的学生都有从旧知迁移、转化到新知的可能性。鼓励解决问题策略的多样化,体验最优化。这节课学生在一系巩固练习中充分体会到分数除以整数的最优计算方法是转化成乘这个分数的倒数。
3、情感、态度与价值观。
这一目标并不是单独存在,它其实渗透在每一个教学环节中,更不能简单地以为它代表着德育教育。本节课,学生有困惑、有惊喜、有自豪、他们有充分从事数学活动的机会, 能够自由地表达自己的想法,分享他人的喜悦,这才是数学课的魅力所在。
出示这样一组信息:
出示:一只小鸟小时飞行12千米。1小时行多少千米?
你会用线段图表示条件吗? (师生一起画出线段图)
求小鸟1小时飞行多少千米,算式怎么列?
这是整数除以分数(板书课题)
1、12÷怎样计算呢?
学生可能有以下三种方法:
(1) 12÷=12÷0.2 (这是转化成整数除以小数进行计算。)
你还能否根据线段图发现不同的解法呢?
(2) 12×5 (这是根据线段图理解的。)
为什么乘5?能在图中解释一下吗?
(3) 12÷1×5 (说出这种做法的同学是班上一个比较认真的孩子,看的出她很动脑子,但是解释的并不是很清楚。)
(4) (12×5)÷(×5)=60 (这是根据商不变的规律进行计算的。)
师:从计算上面来看似乎第二种算法最简单!
这时有学生举手说:我认为整数除以分数,可以除以他的倒数!(我看的出来他在课前已经看过书了。)
师:对,你真聪明,大家从刚才的第二种方法也能看出来,12÷= 12×5,那这个结论到底对不对呢?我们一起在来看例题。
教学反思:
课堂的一开始,我并没有直接从书本例题开始讨论,而是从一个除数是几分之一的简单例子推想出结论,在让孩子们来考虑是否适用于所有的例子呢。这样的安排,让学生们能真正理解整数除以分数的算理,让学生们的思维有一个缓冲阶段,这样更有利于学生思维的拓展,并没有把学生的思维束缚在整数除以分数的一般计算方法中。以这样的教学,我相信肯定会给学生的发展带来更大的空间。
本节课基本上完成了教学目标。体现在:在课堂中,学生从始至终都能以积极的态度和饱满热情投入每一个学习活动中。整节课都发挥了学生的主观能动性,在主动探究除以2的分数除以整数的过程中,学生想出了各种各样的方法,同时也独立思考的基础上通过小组交流,师生探讨以及在画图的帮助下,成功地小结出分数除以整数的一般性计算法则。
反思整个教学过程,我认为成功的关键在于学生是通过自主探究获得知识的,具体分析如下:
⒈学生研究知识方法的产生过程比教师研究如何教更重要。
学生对于新的知识一方面有新鲜与好奇,另一方面对又有着相关的旧知识。因此在教学过程中教师要充分尊重学生已有知识和学习经验,让学生在宽松的氛围中,唤起已有的相关知识。学生能运用旧知识来解决今天所学的分数除以整数,甚至于日后学习的分数除法相关的所有知识。有相关的旧知识做为基础,把分数除以整数的学习研究完全可以让学生自主来研究。体现成功学习的乐趣。
⒉解题方法来自于学生。
对于新的知识的学习,不是教师去讲解,而是能过让学生在独立思考的基础进行看书自学的基础上进行小组交流,师生探讨等让学生主动寻求解决问题的方法。在充足的时间里学生进行充分有效地自主学习活动,发挥学生的主观能动性。从而激发出学生各种各样的解决问题的方法。通过学生的思考,交流,体验,让学生对除以2的研究到位,想出了画图的方法,乘法的方法。计算方法的多样性,学生在除不尽的计算中让学生感受倒数乘法计算方法的优越性。从整个过程来看,学生完全有能力研究新的知识,同时在解决问题的过程学会倾听,学会与人交流,体验数学本身的魅力,感受学习成功的喜悦感。让学生从心里爱上数学。
⒊存在的问题:
探究的主体是学生,但对于差生如何参与到探究的过程中,是我仍需要思考的问题。在计算过程中学生对于思考的过程体验得多,对计算的方法有待加强,学生出现除法算式中除数的倒数是写了,但没把除号改过来。对于有些差生把被除数也改写成倒数。怎样引导学生观察45 ÷2和45 ×12 相等,引出转化的思想。
教学总是一门遗憾的艺术,在不断的反思中会使教学更进一步。
以上就是《今日课件: 数学分数乘整数教学反思简短》的全部内容,想了解更多内容,请点击小学分数教案查看或关注本网站内容更新,感谢您的关注!
文章来源:http://m.jab88.com/j/122265.html
更多