《比例尺》教案
教学目标:
1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点:
运用比例尺的有关知识,学会解决生活中的一些实际问题。
教学准备:多媒体课件。
教学过程:
一、展示目标,引入本课。
二、探究新知,意义建构
1、看一看
下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)
2、说一说
(1)比例尺1:100表示什么意思呢?
生:图上1厘米长的线段表示实际距离100厘米。
(2)在比例尺1:2000的地图上,图上距离1厘米,表示实际距离(2000)厘米。
(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。
3、议一议
(1)什么是比例尺呢?
图上距离和实际距离的比,叫做比例尺。
(2)比例尺怎样表示呢?
比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)
(3)比例尺有什么特征呢?
①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。
【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。
三、拓展延伸,巩固新知
1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?
70:3.5=700:35=20:1
答:这幅设计图纸的比例尺是20:1。
2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)
3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?
32×6000000=192000000(厘米)192000000厘米=1920(千米)
答:广州到北京实际距离是1920千米。
五、总结新课,整理知识
通过今天的学习,你有什么收获呢?
板书设计:比例尺
比例尺=图上距离:实际距离
实际距离=图上距离×1厘米表示的实际距离
图上距离=实际距离÷1厘米表示的实际距离
教学内容:课本第54页例1、例2;练一练;《作业本》第24页。
教学目标:
1、理解比例尺的意义,会根据图上距离和实际距离求比例尺;会根据图上距离和比例尺求出实际距离。
2、理解比例尺的应用,能解决简单的实际问题。
教学重点:比例尺的意义
教学难点:用方程求实际距离
教具准备:中国、浙江地图
教学过程:
一、引入:
同学们,你们会画长方形吗?
现在请大家在本子上画一个长20米,宽8米的长方形你能吗?怎么办?
我们在绘制地图和其它平面图形的时候,要把实际距离缩小(或扩大)一定的倍数后再画到纸上,这时就要涉及到一种新的知识——比例尺。
二、教学新课:
1、出示例1。一条步行街,长240米,在平面图上用12厘米的线段来表示。求图上距离和实际距离的比。
(1)根据题意,写出比。
(2)单位不同,要化成相同单位以后,再化简比。
12厘米:240米
=12厘米:24000厘米
=12:24000
=1:2000(或)
2、揭示比例尺的意义。
(1)图上距离和实际距离的比,叫做比例尺。
图上距离:实际距离=比例尺
或:=比例尺
为了计算方便,通常把比例尺写成前项(或后项)是1的比。
上题中的比例尺可以写为:
由上面关系式,已知其中两个条件,能否求出第三个关系式?(请学生说出其它两个关系式)
3、教学例2。
在比例尺是1∶30000000的地图上量得上海到北京的距离是3.5厘米,上海到北京的实际距离大约是多少千米?
(1)思考:怎样根据比例尺的数量关系求出实际距离。
(2)请学生试一试,有几种不同的方法?(做后对照书本。)
(3)如不用方程解可怎么做?
4、试一试。P55
三、巩固练习:
练一练1、2、3、4题
四、小结。
1、这节课我们学习了什么?
2、划出书中概念。
3、熟记三个数量关系。
五、《作业本》第24页。
北京版六年级下册《比例尺》数学教案
教学目标:
1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。
2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
3.理解比例尺的书写特征。
教学重点:
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教学过程:
一、引入
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
二、教学比例尺的意义。
1.什么是比例尺(自学书上内容,学生交流汇报)
出示图例1
在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2.介绍数值比例尺
让学生看图。
“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000 ,表示图上距离1厘米相当于实际距离100000000厘米。
3.介绍线段比例尺
还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”
4.介绍放大比例尺
出示图例2
“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“
学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1
比较这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5.总结
比例尺书写特征。
(1)观察:比例尺1:100000000
比例尺1/5000000
比例尺2:1
(2)看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
6.比例尺的化简和转化
“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”
说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作
“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。
“现在单位统一了,是多少比多少,怎样化简?”
图上距离:实际距离=1:5000000
教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。
三、巩固练习
1.做一做。
过程要求
(1)学生独立完成。(要求写出数值比例尺)
(2)同学之间互相交流。
(3)汇报交流结果。
2.完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。
四、课堂小结
(本课要点:1.比例尺的意义;2.线段比例尺和数值比例尺的互化;3.注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)
目标
1.知识与技能:认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2.过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
3.情感、态度、价值观:体会数学与日常生活的密切联系。
重、难点
1.理解比例尺的含义。
2.能根据图上距离、实际距离、比例尺中的两个量求第三个量。
教学准备
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图。
教法学法
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
教学过程
一、创设情境(引入新课)
师:同学们,如果要给我们的教室画一张平面图,它应该是什么形状的?
生:长方形。
师:课前我们量过教室的长、宽各是多少?
(生:长大约9米,宽大约6米 。 )
师:请大家在练习本上画出我们教室的平面图。(生画师巡视)
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?
(学生的答案可能有:长方形长9厘米,宽6厘米。
或者是长3厘米,宽2厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是3:2。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长9厘米、宽6厘米,也不可能是长3厘米、宽2厘米,你能想个办法,让别人也知道我们教室有多大吗?
(生动脑想、动手写)
引导学生汇报:
(1)直接写上"教室面积大约50平方米。"
(2)在图上标出"长9米、宽6米。"
(3) 标上"1厘米=1米"。
(4)1厘米怎么能等于1米呢?我认为可以写"1厘米相当于1米。"
( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。现在请拿出课前准备的地图,找一找看看上面有无类似的标注?通过汇报,让学生发现地图上有不同的标注。教师板书不同的标注。
( 引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
二、意义建构(认识比例尺)
1.介绍各种比例尺的名称。
师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。
2.认识比例尺。
如:师问比例尺1:600000是什么意思?
生:就是图上1厘米的长度代表现实中的600000厘米。
师:比例尺1:230000是什么意思?
生:就是地图上1厘米的距离相当于现实中的230000厘米的距离。
师:同学们讲得都对,那到底什么是比例尺?
引导得出:
1.比例尺就是一种可以把实际距离放大或缩小的计量单位。
2.我认为比例尺就是图上长度比上现实中长度。
3.图上画的长度与现实距离的比。
4.图上长度与实际距离的比。
师:(规范学生语言)对,比例尺就是图上距离与实际距离的比。
板书:比例尺=图上距离/实际距离
由上列公式并推导出:图上距离=比例尺x实际距离
实际距离=图上距离/比例尺
(让学生按自己的理解用自己的语言充分描述什么是比例尺,教师再规范语言,这样,一促进了学生思考,二促进了思维外显,三促进了交流。)
三、实际应用(比例尺的应用)
1.出示小黑板(笑笑家平面图)
师:这是笑笑家的平面图。要求笑笑的卧室的实际面积是多少,需要知道哪些条件?(卧室实际的长和宽)怎么解决?
2.学习课本第30页内容。
(1)学生自己阅读。
(2)学生动手测量笑笑家的平面图的图上距离,计算出笑笑卧室的实际面积。先小组内交流自己的想法,然后全班交流。
(3)独立算出笑笑家总面积,再全班交流。
(4)先让学生理解题意,再独立思考、解决,全班交流。
(5)先尝试解决,再全班交流。
3.谁帮老师算算小黑板上的图是按比例尺多少来画的?求出比例尺并标注。
4.师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?
指导学生在画的长是9厘米、宽是6厘米的图上加上了"比例尺1:100"。
在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。
5.完成第31页"试一试"第1题、"练一练"第一题。
四、课堂小结
师:通过本节课的学习,你有什么收获?还有什么问题吗?
苏教版六年级下册《认识比例尺》数学教案
教学目标:
1、使学生理解比例尺的意义,学会求比例尺。
2、使学生经历比例尺产生过程和探究比例尺应用的过程提高学生解决实际问题的能力。
3、结合情境使学生体验到数学与生活的密切联系进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的概念,根据比例尺的意义求出比例尺。
难点:
从不同角度理解比例尺的意义。
教学内容:
一、情景导入,明确比例尺用途。
师:同学们,我国国土面积有多大?(960万平方公里)
大家知道吗?我国的国土面积居世界第三位。这么大的面积,我可以现在就展示出来,大家相信吗?(大屏)我是怎样做到的呢?(缩小)在现实生活中有时根据需要把图形放大或缩小若干倍再画到图纸上。那么大家猜猜:这张图把中国领土缩小了多少倍?(100000000)
二、归纳概念。
师:1:100000000中的1表示什么?(图上距离) 那么,100000000呢?(实际距离) 这两个距离是以什么形式出现的呢?(比) 我们赋予这个比一个新的名称------比例尺。(板书课题) 那么,比例尺怎么求呢??图上距离:实际距离=比例尺(板书) 我们还可以把它写成比的形式。(板书)
理解1:100000000的意义。(图上距离1厘米,表示实际距离100000000厘米。) 同桌互说。出示习题。
师:比例尺是一个大家族,他们是一对孪生兄弟。左面的这个比例尺也可以写成分数形式。由于他们是数字组成的,我们称他们为数值比例尺。右面的这个比例尺所表示的意思是图上距离1厘米,实际距离50千米。也可以用它(大屏)表示。他们是由线段组成的,我们称为线段比例尺。在画线段比例尺的时候要注意线段的长度要是1厘米。在最后面的数字末尾加一个单位名称。
师:在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后再画到图纸上。
师问:你知道2:1是什么意思吗?(图上距离2厘米,表示实际距离1厘米) 你发现了什么?前项大于后项。 这个图形比实际的要大。(比例尺前项比后项大时,就表示放大。)
师:请看大屏,仔细观察这2个比例尺,你发现了什么??(总有一个数字是1) (小结:为了计算方便,通常把比例尺写成前项或后项是1的比。)
三、讲解例题。
1、出示例题,指名读题。
2、结合公式“比例尺=图上距离:实际距离”列式
3、强调:比例尺在计算的时候要统一单位。比例尺没有单位名称。
四、习题练习。
1、做一做 一栋楼房东西方向长40m,在图纸上的长度是50cm。这幅图纸的比例尺是多少?
2、填空
(1)( )和( )的比叫做这幅图的比例尺。
(2)通常把比例尺写成前项或后项为( )的比。
(3)比例尺分( )比例尺和( )比例尺两种。
(4)比例尺 表示图上1cm的距离代表实际距离( )km,转化成数值比例尺是( )。
3、判断
(1)所有的比例尺的前项都是1。( )
(2)一幅图的比例尺应根据图纸的大小来确定。( )
(3)一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。( )
(4)地图上量得5cm的距离表示实际400m的距离,这幅地图的比例尺是1:80。( )
(5)一幅地图的比例尺是1:500000厘米。( )
(6)比例尺就是一把尺子。( )
4、请你根据地图中的数值比例尺标出线段比例尺。
5、团结路的实际距离是1800m。
(1)量一量团结路上在图上的距离,求出这幅图的比例尺。
(2)将这幅图的比例尺用线段比例尺表示出来。
6、七星瓢虫的实际长度是5mm。量出下图七星瓢虫的长度,求这幅图的比例尺。
7、附加题
用1:1000 000,1:6000 000,1:250 000,1:100这四种比例尺画同一种物体,哪一种比例尺绘制的图比较大? 总结:这节课你有什么收获? 数学是需要大家探索的学科,希望大家多多发现问题,多多解决问题。
内容:人教版六年级下册认识比例尺(课本第48、49页)
教材分析:
本节内容是在比的基础上 的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。
教学目标:
1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。
教学重点:理解比例尺的意义。
教学难点:能熟练解答比例尺的有关问题。
教学准备:多媒体课件、直尺、地图
教学过程:
一、情景引入,激发兴趣
师:北京是我国的首都,同学们,2008年北京奥运会取得了巨大成功,中国的悠久历史,灿烂文化,众多的名胜古迹,感受一下我们祖国的美丽!
师:今天老师把我们的祖国和首都北京搬进了课堂。(课件出示:数值比例尺为1:100000000的中国地图和线段比例尺为 的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?
生:把它缩小。
师:老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?请出题考考老师。
生1:我想知道北京到上海之间的实际距离
生2:我想知道我们合肥到北京的实际距离
(师用地图量出地图中北京到上海、合肥到北京的图上距离,很快回答学生的问题)
师:同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?
(设计意图:数学应该来源于生活,我在创设情景时把中国和北京搬进课堂,激发了学生的好奇心,又调动了学生探究新知的积极性)
二、揭示课题,提出疑问
师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。
今天这节课我们就来认识比例尺。(板书:认识比例尺)
师:关于比例尺,你想了解什么呢?
生1:什么叫比例尺?
生2:怎样求比例尺?
生3:比例尺是尺吗?
生4:比例尺有几种形式?
(设计意图:揭示本节课题,让处于对新知好奇的学生提出自己的疑问,带着问题有目的性地学习)
三、 实验对比,得出概念
师:为了解决同学们提出的疑问,我们来做一个实验。
师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。
展示学生的画图结果。
小组的同学互相讨论自己是怎么画的。
生1:我用1厘米表示实际3米。
生2:我用3厘米表示实际3米。
师:图上画的1厘米,3厘米叫“图上距离”,3米叫“实际距离”。
(设计意图:把3米长的线段画在本子上,让学生在动手实践过程中初步感受到比例尺的意义,为后面理解与把握“比例尺”的意义奠定基础)
师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。
展示学生求的比。
师:这些比的前项代表什么?后项又代表什么呢?
生:前项代表图上距离,后项代表实际距离。
师:谁能说说1:300 和 1:100表示什么意思?
生答
师:像这样的比叫做比例尺,课件出示比例尺的定义。
师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)
生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺
师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?
小组的同学互相讨论。
用1:300 或1/300 和 1:100或1/100 等比的形式表示的比例尺叫数值比例尺。它们也可以表示成 和
课件出示:中国地图上“比例尺1:100000000”表示的意义是什么?
师:你们发现1:100 1:300 1:100000000这些比例尺都是把实际距
离怎么样?
生:缩小
师:老师这儿有一个机器上的小零件,你们觉得它怎么样?
生:很小
师:这么小的零件如何把它画在图纸上。
生:把它放大
师:很好!课件出示机器零件的放大图纸。
师:你知道图中2:1表示什么吗?
生:图中2厘米表示实际的1厘米。
师:你们发现这些数值比例尺有什么相同和不同的地方吗?
相同点:
生1:前项表示图上距离,后项表示实际距离。
生2:比的前项或后项为1
不同点: 新 课标 第 一网x kb 1.com
生:1:100 1:300 1:100000000是把实际距离缩小,2:1是把实际距离放大
师:为了计算方便,通常把比例尺写成前项或后项为1的比。
出示课本第49页的“做一做”,指名板演,集体订正。
(设计意图:学生通过独立思考、讨论与交流得出比例尺的意义,并学会了怎样求比例尺,从中体会探索的乐趣)
四、 探讨数值比例尺和线段比例尺的互化
呈现北京市地图让生找出“比例尺 ”
师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。
师:如何把这幅地图的线段比例尺改成数值比例尺?
小组的同学互相讨论尝试改写。师板书例1.
师:谁能说说改写时要注意什么?
师生共同小结。课件出示:(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1
师:怎样把数值比例尺改写成线段比例尺呢?
呈现课本第53页的第1题。学生独立做,集体订正。师强调实际距离的单位要改写成所要求的单位。
(设计意图:将数值比例尺与线段比例尺的互化安排在一起教学,便于学生比较,让学生在尝试性地改写、练习中理解并掌握。)
五、巩固练习,深化概念
1、我会判断
(1)比例尺是一种测量长度的尺子 ( )
(2)一副图的比例尺是80:1,表示把实际距离扩大80倍 ( )
(3)比例尺的后项一定比前项大 ( )
(4)把线段比例尺 改写成数值比例尺是1:8000000 ( )
2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。
3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。
(设计意图:这些练习,既巩固新知,又让学生体验思维的乐趣,既沟通数学与生活的联系,又培养了学生应用数学知识的能力,充分调动了学生学习的积极性)
六、课堂小结
通过这节课的学习,你有什么收获?你认为自己的表现如何?给自己打打分。
七、布置学生填质疑卡
八、作业 课本练习八的第2、3题
比例尺的应用
教学目标
1、知识与技能目标:联系学生的生活实际,理解比例尺的意义。根据比例尺的意义解决实际问题。
2、过程与方法目标:在师生、生生的交流活动中,体会比例尺在实际生活中的运用。结合实际,经历提出问题、分析问题、解决问题的过程,初步学会数学的思维方式,培养问题意识和解决问题的能力。
3、情感态度目标:让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到比例尺的实用性和科学的探索方法,培养学生读图、用图以及小组合作的意识,增强学好数学的信心。培养学生热爱家乡,合作学习的情感。
教学重点:能按给定的比例尺求相应的实际距离。
教学难点:比例尺在生活实际中的运用
教学过程:
一、复习引入:
1 、复习比例尺的意义:
刚才老师了解到同学们的五一安排非常丰富,其实在我们学校周围也有许多美丽的景点。老师给同学们带来了一幅地图,你能看到什么?还能看到什么?(观察的非常细致)比例尺1:10000你是怎么理解的?你还了解比例尺的哪些知识?
预设生1:图上一厘米表示实际中的一万厘米,实际距离是图上距离的一万倍。
2:图上距离/实际距离=比例尺。(板书)
3:同样的知道(比例尺)、(图上距离))我们就可以求(实际距离)
那么知道 (比例尺)、(实际距离)我们就可以求(图上距离)
也就是说知道其中的两个量,我们就可以求出第三个量.()
2、揭示课题。
大家对比例尺有了深刻的了解,其实比例尺在我们生活中有着广泛的应用。今天,我们就一起来研究比例尺的应用。(贴出课题)
二.教学求实际距离.
1、求东门小学到铁塔寺的实际距离。
下面,我们就带上比例尺,进行一次地图上的旅行吧。现在我们从东门小学出发到铁塔寺。
(1)出示课件:
仔细观察所以信息,你能提出哪些数学问题?
预设一:生提:图上距离是多少? (测量)
预设二:从东门小学到铁塔寺实际距离大约多少米?(评:真了不起,这个问题很有价值,我们可以共同研究一下!)
仔细观察所有信息与问题, 要求从东门小学到铁塔寺的实际距离,我们就必须先知道什么? 老师给同学们也提供了同样的地图,请你想一想、量一量、算一算,求出从我们东门小学到铁塔寺的实际距离。
生做,师巡视
汇报交流:
师:谁愿意来说说你的想法?
方法一:方程。
说说你为什么这样列式?
使用这种方法还有什么要提醒大家的吗?
刚才我们根据比例尺的数量关系,利用比例尺的意义直接解决了这个问题。
其他同学还有不同方法吗?
方法二:生:“4÷1/10000”求出的是实际距离。我们组是这样想的:因为“图上距离∶实际距离=比例尺”,在这里图上距离是比的前项,相当于除法中的被除数;实际距离是比的后项,相当于除法中的除数;比例尺相当于图上距离和实际距离的商。而“除数=被除数÷商”,所以可以推出“实际距离=图上距离÷比例尺”,我们组就是根据这种关系求实际距离的。
这种方法也不错。
方法三:我们组是这样想的:根据比例尺“1∶10000”推出实际距离是图上距离的10000倍,所以从学校到铁塔寺的实际距离可用“4×10000”求出,求出结果之后,因为单位不统一,所以还要把实际距离的单位转化为“米”,随即问:怎么列式?(教师板书)
2、比较几种算法。
同学们,很会观察,很会思考。从不同角度,想出多种方法解决了同一个问题。
这些方法中,你更欣赏哪一种?为什么?
教师小结:我们的数学就是那么奇妙,在变与不变之间存在着一定得规律。虽然方法看似不同,但都是利用比例尺的意义来灵活解答的。
3、练习:先量出铁塔寺到济宁人民公园的图上距离,再算出实际距离大约是多少米?
游览了古老的铁塔寺,让我们再一起去从新修建的济宁人民公园逛逛!
仔细观察所有信息,
想一想,要求从铁塔寺到济宁人民公园的时间?我们必须先求什么?
运用我们刚才研究的知识能解决这个问题吗 做在练习本上。
学生独立做,师巡视
生1:(方程)师:怎么想的?
生2:计算
师小结:同学们真了不起,自己解决了这个问题。根据比例尺的意义解决了地图旅行中的问题。其实在我们生活中比例尺的应用还有很多,看一下这两道题,先仔细读题,想一想,做在练习本上。
三、巩固练习。
1、基本练习
出示:按1:1000的比例尺做出的邮电大楼模型,高为16.8厘米,邮电大楼的实际高度是多少米?师读题
独立完成。
按10:1的比例尺放大的手表截面图,图中的表盘的直径是20厘米,这个表盘的实际直径是多少厘米?
学生独立解答; 汇报交流。
2、提高练习:
课前的谈话中,老师了解到同学们有的想到济宁周边游玩。
出示:课件 你能帮助他们解决这个问题吗?
想一想,再做出来。
生读
汇报:两种方法
观察这两种方法,你想说些什么?
3、老师还了解到,有的同学想到省内给地走走,看这是我们山东省的一幅地图。 自己设计出你的出游路线,算一算行程。
四、回顾小结:
在我们课本八十七页,运用我们今天所学知识就能帮助你更加科学合理的安排你的旅程。
祝愿大家能够渡过一个愉快的五一假期。
教学目标:
1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例
2.培养学生的逻辑思维能力
3.感知生活中的数学知识
重点难点1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其 特征
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、课前预习
预习24---26页内容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
二、展示与交流
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想
二、 反馈与检测
1、判断下面每题是否成反比例
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”P33第1题。
3、教材“练一练”P33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
板书设计: 反比例
两个相关联的量,乘积一定,成反比例
关系式:X×Y=K(一定)
课后反思:
本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。
教学内容:
1、本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。
2、学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。
教材分析:
对比新旧教材,我们不难发现新教材在保留原来表格的基础上取而代之的是两种量的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。
设计理念:
教材的改动是为了让学生自己去发现寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,带着问题动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面
1、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的组织者与引导者。
2、努力实现扶与放的和谐统一,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。
教学目标:
基于对教材的理解和分析,我将该节课的教学目标定位为
1、帮助学生理解正比例的意义。用字母 表示变量之间的关系,加深对正比例的认识。
2、通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
3、学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。
重点难点:
理解正比例的意义。
重难点处理
学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,组织能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的高效。
教学过程:
说教学策略和方法,引入新课。
首先提供情景素材,接下来教师引导,培养学生自己发现问题的能力,学生自主探究成正比例的量这个环节分为了四层:观察—讨论―—再观察—再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
本环节将书中的表格分两层呈现,首先出示表格,让学生观察,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格1、表格2,让学生计算正方形的周长、面积,让学生体会周长和边长的比值相等、面积与边长的比值不相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:周长和边长这两种变化的量具有什么特征?面积和边长两种变化的量又具有什么特征?学生讨论汇报后,可引导学生归纳:正方形的周长、面积都随着边长的变化而变化,它们是两种相关联的量;边长增加、周长(面积)也增加,周长(面积)降低、边长减少,但周长和边长的比值总是一定的,而面积与边长的比值不是相等。所以,周长与边长能成正比例,面积与边长不成正比例, “周长、边长”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的周长和边长是成正比例的量,周长和边长成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生独立经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式y/x=k(一定),加深对正比例的认识。
最后,通过练习让学生来巩固今天的新知,由于很多的练习都渗透到了新授的教学过程中,因此,练习的设置较少,重点是让学生在正反例的对比中,加深学生对概念的理解。
北师大版六年级下册《正比例》数学教案
教学目标
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3 .结合丰富的事例,认识正比例。
教学重难点
1.结合丰富的事例,认识正比例。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学过程
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一
1.观察图,分别把正方形的周长与边长,面积与边长的变化情 况填入表格中。请根据你的观察,把数据填在表中。
2.填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分 别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积与边长的比是是一个不确定的值。
(二)情境二
1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2.请把下表填 写完整。
3.从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)小结
一种量变化,另一种量也随着变化,并且它们的比值(也就是商)一定,我们就说两个量正比例。
(四)想一想
1.正方形的周 长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的 面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2.乐乐和爸爸的年龄变化情况如下:
乐乐的年龄/岁67891011爸爸的年龄/岁3233(1)把表填写完整。
(2) 父子 的年龄成正比例吗?为什么?
(3)爸爸的年龄=乐乐的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
活动二:练一练。
1.判断下面各题中的两个量 ,是否成正比例,并说明理由。
( 1)轮船行驶的速度一定,行驶的路程和时间。
(2)小新跳高的高度和他的身高。
(3)小麦每公顷的 产量一定,小麦的公顷数和总产量。
(4)矿泉水瓶中喝掉的水和剩下的水。
2.根据下表中平行四 边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)
3.圆的面积与半径成 正比例吗?你是怎么想的?与同伴交流。
4.分别举一个成正比例和一个不成正比例的例子,同桌相互说说。
活动三:课堂小结
说说本节课的收获?
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
北师大版六年级下册《比例的应用》数学教案
教学目标
1.进一步理解解比例的意义。
2.掌握解比例的方法,会解比例。
3.强调解比例的书写规范和计算中的灵活性,以提高同学们的审美能力和计算能力。
教学重难点
掌握解比例的方法,学会解比例。
教学过程
一、复习旧知。
1.什么叫做比例?什么叫做比例的基本性质?
2.根据比例的基本性质, 将下列各比例改写成乘法等式。
3∶8=15∶40
二、探索尝试,解释交流。
1、师:同学们,进行“物物交换”活动,看图 你能找到哪些数学信息?根据这些信息 你能提出什么问题?
这个问题怎么解决?写出你的想法。
师:假设14个玩具汽车可以换x本小人书,你能写出一个 比例吗?这个比例中x是多少呢?请在小组内交流一下。
(1 )自己动脑写出想法。
(2)小组交流。
2、师:哪个小组展示本小组的想法。
板书:4:10=14:x
解:4x=140
x=35
答:14个玩具汽车可以换35本小人书。
3、总结:
师:在比例里,如果已知任何三项你能求出比例中的另外一个未知项?
对,先写成乘法形式,再求出未知数的值。这种求比例中的未知项,叫做解比例。
三、课堂练习
1、解比例
2、根据下面的条件列出比例,并解比例。
(1)6和8的比等于36和x的比。
(2)比例的两个内项是0.4和0.3,两个外项是6和x。
(3)比例的第一项是4,第二项是8,第三项是x,第四项是10。
四、总结:
谈谈这节课的收获?
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
北师大版六年级下册《反比例》数学教案
教学目标
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规 律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重难点
掌握成反比例量的变化规律及其特征。
教学过程
一、在情境中感受两种相关联的量之间的变化规律。
用x,y表示长方形相邻两边的边长,表1是面积24 cm2的长方形 相邻两边边长的变化关系,表2是周长为24cm的长方形相邻两边边长的变化关系。
1.根据两个长方形的边长变化情况把表格填写完整。
2.填完表以后思考:
(1)说说从数据中发现了什么?
(2)表1和表2中,长方形 相邻两边边长之间的变化规律相同吗?
3.小结:长方形的一条边的长随着邻边长的增长而减少,在变化过程中,面积24cm2的长方形的相邻两边长的积都是24。周长为24cm的长方形相邻两边长的积都不相等,但他们的和相等。
二、自主探究:
1.王叔叔要去游长城,不同的交通工具所需时间如下表,你从表中发现什么?
自行车大巴车小轿车速度/(千米/ 时)106080时间/时1221.5先让学生同 桌之间交流,再指名学生口答讨论的结果。
(1)需要的时间随着交通工具的速度的变化而变化。交通工具的速度越慢,需要的时间反而扩大; 交通工具的速度越快,需要的时间反而缩小。
(2)可以看出它们的 变化规律是:交通工具的速度和时间的积总是一定的。因为交通工具的速度和时间的积都是120。提问:这里的120是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(路程一定时,交通工具的速度和时间的乘积一定)
3、总结。
像这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。我们就说这两种相关联的量成反比例?
追问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定?)
4、想一想。
买苹果的总钱数一定,苹果的单价与数量成反比例吗?你是怎么想的?与同桌说说。
三、巩固练习
1.判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
(4)长方形的面积一定,它的长和宽。
(5)铺地面积一定,方砖边长与所需块数。
2.奇思读一本书,已读的页数与剩下的页数的情况如下。
已读的页数1234……剩下的页数797877……提问:已读页数和剩下页数能不能成反比例?为什么?
3.有600毫升果汁,可平均分成若干杯。请把下表填完整
分的杯数/杯65432……每杯的果汁量/ml100……(1)表中有哪两种量?
(2)分的杯数是怎样随着每杯的果汁量变化的?
(3)这两个量成反比例吗?
4.请举一个成反比例的例子,同桌相互说说。
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?判断两 种量是不是成反比例,关键是什么?
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
北师大版六年级下册《比例的认识》数学教案
教学目标
1.在具体情境中,理解比例的意义和基本性质,会应用比例的意义和 基本性质正确判断两个比能否组成比例。
2.在探索比例的意义和基本性质的过程中发展推理能力。
3.通过自主学习,经历探究的过程,体验成功的快乐。
教学重难点
理解比例的意义和基本性质。
教学过程
一、创设情境,提出问题。
师:上学期我们学过了有关比的知识,说说你对比都有了哪些了解?
师:今天我们要学的知识也和比有着密切的关系。
师:今天,小明带来了几张自拍照。仔细观察图片,这些照片中那些像,那些不像?
二、探索尝试,解释交流。
1.认识比例及各部分名称。
师:那两张照片像呢?为什 么?
它们长和宽的比值相等,所以就像。
师:它们的比值相等,我们就用等号将两个比连接起来。像这样表示两个比相等的式子,我们把它叫做比例。谁能举几个比例的例子?
师:你能给比例各部分起名字吗?
2.练一练:
下表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?(写一写,与同伴交流。)
3.认识比例的基本性质。
观察这些比例,除了它们的比值相等外,你还发现什么?
师:谁 愿意谈谈自己的发现?
师:你们这个发现是不是一个规律呢?请同学们来验证一下。
师 :对,在比例里,两外项的积等于两内项的积。这在数学上叫比例的基本性质。
三、课堂练习。
1.
(1)分别写出图中两个长方形长与长的比和宽与宽的比,判断这两 个比能否组成例。
(2)分别写出图中每个长方形长与宽的比,判断这两个比能否组成比例。
2.哪几组的两个比可以组成比例?把组成的比例写出来。
15:18和30:36 4:8和5:20
1/4:1/16和0.5:2 1/3:1/9和1/6:1/18
3.应用比例内项的积与外项的积的关系 ,判断下面哪几组的两个比可以组成比例,并写出组成 的比例。
10:1.5和8:1.2 6:9和12:18
4.根据下面的两组乘法算式,分别写出两个不同的比例。
90.4=1.2 3a=2b
四 、总结:
说说这节课都有哪些收获?
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
一、 导入
同学们,我们生活在动的世界里,风吹树梢动,鸟儿飞翔翅膀动、就连我们身体中的血液每时每刻都在不停的流动,其实我们的数学世界也正因为有了动而变得丰富多彩。现在让我们做了实验感受一下吧!请大家选择你身边的一样物品,让它动一动,看看你发现了什么?
1、 点动成线 如果把这个小球看成是一点,那么它运动的轨迹形成了什么?(曲线)能用四个字概括一下吗?板书:点动成线
2、 线动成面 如果把这枝笔看成是一条线,那么它运动的轨迹形成了什么?(面)概括起来就是:线动成面
3、 面动成体 如果把这本数学书看成是一个长方形,那么它是怎么运动的呢 ?(旋转)板书。旋转后形成了一个圆柱体,也就是说:面动成体。
大家能举出生活中的这些现象吗 ?
小结:看来点动成线,线动成面与面动成体在我们的生活中随处可见。(课件)这节课我们就来研究面的旋转。
二、 新课
1、 以前我们学习过那么平面图形?(学生回答老师贴图)
2、 这些平面图形旋转后会形成什么立体图形呢?请大家先想一想,猜一猜并和同桌说一说。
3、 大家刚才说得对不对呢?现在我们来动手做一做。每组的黑袋子里有一些平面图形,请大家选择好以哪条线动轴旋转后贴在圆棒的双面胶处,然后旋转,最后把你的发现记录在汇报单上。
4、 小组活动,操作记录
5、 同学们,我们就做到这,谁来汇报一下。学生汇报,老师贴图。
哪个小组还有补充?
根据刚才这些同学的汇报,你又想说些什么 ?
A、不同的平面图形,旋转的立体图形是不一样的。
B、不同的平面图形,也能旋转出同样的立体图形。(正方形和长方形、圆和半圆直角三角形和等腰三角形)
C、同一个平面图形,按照不用的边为轴,旋转出的立体图形也是不一样的。
6、小结:看!同一个长方形以不同的轴旋转可以形成圆柱体。象三角形和梯形以不同的边为轴可以旋转出不同的立体图形。(课件)
7、在这些立体图形里有我们比较熟悉的圆柱体和圆锥体。现
在请大家打开书进一步来了解它们。谁来说说它们有什么相同点和不同点?(相同点:都有一个曲面和一个底面,不同点圆柱体上面也是一个底面,而圆锥体上面是一个顶点。圆柱体有无数条高,而圆锥体只有一条。)
8、在我们生活中哪些物品是圆柱体哪些物品是圆锥体呢?学生举例,相机指出各部分名称。
三、 练习
看来同学们对圆柱体和圆锥体已经很熟悉了,那接下来薛老师可要考考大家了!
1、 实物判断:是不是圆柱体?说明理由.
2、 教材四页习题。
3、开放题。
A、下列图形旋转后会形成哪个立体图性?
B、下列哪个塞子既能塞住甲盒又能塞住乙盒呢?
四、 总结
同学们,看!我们的数学世界多么丰富多彩啊!简单的动就将这些平面图象变成了我们熟悉的立体图形,今后让我们继续多观察、多操作去探索数学世界的奥秘吧!
《北师大版六年级数学下册《比例尺》教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学六年级数学比教案”专题。
文章来源:http://m.jab88.com/j/114082.html
更多