高中数学教案课后反思简短
2025-10-29 高中数学教案课后反思简短高中数学教案课后反思简短(九篇)。
在现代社会,课堂教学至关重要,而反思则是自我提升的重要环节。写好反思需注重总结教学中的成功与不足,从中提炼经验与教训。以下是9篇简短的高中数学教案课后反思,希望能为大家提供帮助。

〈1〉高中数学教案课后反思简短
一直以来,我都在不断反思、探索,寻觅一条如何才能使学生学好数学,通向高考成功之路。在一段时期的实践中,我发现学生在学习过程中存在着几点问题:
1、很多问题都要靠我讲他们听,我讲得多学生做得少,同学们不善于挤时间,独立动手能力比较差,稍微变个题型就不知所措,问其原因,回答不会,做题没思路,一没思路就不想往下做。平时做题少,很多题型没有见过,以致于思维水平还没有达到一定高度,做起题来有困难。
2、基础知识掌握的不扎实,有些该记忆的公式没有记注该理解的概念没有理解,尤其是立体几何基本问题的求法,复合函数的求导法则等,导致做题时不知该用哪个公式,还得去翻书。
3、上课听课的效果不好。大部分同学都说,课堂上我讲的东西极大部分能听懂,但一到自已做题就不会。其实这部分同学听懂的只是对某一道题表面上的东西,其实质的东西,它所蕴含的思想方法,没有融入到大脑中,不会举一反三,没有从问题的表面看到本质,思维没有得到升华,课下又不巩固复习,导致讲过的题型仍然不会做。
4、现在有少数学生比较懒,没有养成良好的学习习惯,有些问题他知道思路后,就只知道说不动手,数学课桌子上不准备草稿纸,以致于每次考试都犯了眼高手低的毛病,得不了高分。你最好的.选择!
对于以上学生存在的问题,我借用了以下的一些基本办法:
1、关爱学生,激起学习激情。我知道热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。
2、每天除了把资料书的作业做完后还做3道典型的高考题,当天批改,对没有完成作业进行批评教育直到其改进为止。
3、强化基础知识的记忆,对一些重点知识、一些性质进行不定时的测验,及时检查他们对基础知识的掌握程度,以便因材施教。
4、提高课堂45分钟效率。课前尽量认真备课,把可能遇见的情况逐一解决,并时常练一些题同时归纳近几年高考的主要题型和所有的知识点。在课堂上我尽量把一些解题的主要思想方法和基本技巧,比如数形结合思想、函数方程的思想、化归与转化思想,选择题中的直接法,排除法,特殊值法,极值法等教给他们,既使他们不能立刻学会,但时间久了,自然而然的就能把方法融入解题当中了。
5、高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。课下个别辅导,通过辅导能知道哪些知识存在问题,或者是我上课遗漏的问题,都能及时得到解决。
6、认真分析数学临界内的临界生和临界外的临界生的学习数学的状态。比如说每次测试都能在90分以上的同学,应建议他们课后可做一些适合自己的题目。对一些数学“学困生”,鼓励他们多问问题,多思考。采用低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。
〈2〉高中数学教案课后反思简短
随着课程的逐步深入,可能导致学生对高中数学课程的难以理解和教师对高中数学课程的难以教学的问题出现。为了有更好的教学效果,我们用情境创设来提高我们的教学质量,让学生在情境中不知不觉地理解和记住某些知识,在情境中学习,在快乐中学习。
一、情境创设的对象和意义
我们针对教学中出现的一系列问题,比如说学生对于比较难的知识点听不懂;对长久以来的机械教学感到厌倦,不想听,这时我们需要对教学方法进行调整,给学生创造一个不一样的课堂,吸引学生的眼球,丰富多彩的情境不仅提高了学生的积极性,而且对于课堂的效率也有非常显著的提高。
二、情境创设的原则
情境创设的根本目的是对学生的自身发展具有良好的促进意义,我们不但注重情景的模拟,还要在情境创设中对学生的未来有影响,教会他们面对问题的分析方法,其中最重要的是指导学生对于世界观的认知,找出普遍的规律,积极思考,情境创设在无形中对于学生有深远的影响。在情境创设中,我们最基本的是要保证教学内容的准确性,保证与教材相一致,假如创设的教学的内容都有问题,那么无论如何创设情景都是一个失败的案例,只能为你带来麻烦,给学生带来负担。其次,教学是合理的教学,是在现有基础上的教学,是有侧重点的教学,情境创设出一个能被大家所理解的所看到的浅显的内容才是好的教学案例。我们在情境创设中忌讳华而不实的教学方法。最后,我们要根据学生现有的认知水平进行情境创设,过高过低的估计都不利于教学的进行。情境创设要量身定做,争取达到最完美的教学效果。另外,情境创设更要注重创新,与时俱进。作为国家未来栋梁的二十一世纪的学生,正在努力接受着新知识的滋养,我们不能把过去的例子一遍一遍的重复,创新的案例使教学事半功倍。与此同时,教师与学生的关系也正在微妙变化着,我们根据与学生之间的关系变更教学策略,引导学生对数学的正确思考方式,让学生真正爱上数学。
三、情境创设的方法
(一)抛实际问题,给学生对求解的`渴望
在情境创设方法中,最基本的就是向学生抛问题,把我们常见的生活中的问题提出来,引起学生的共鸣,推进学生对问题求解的热情。我们知道,数学虽然是一门理学学科,但是也是来源于生活,都是从生活中抽出的模型,我们只需将数学模型回归到生活中,就可以达到意想不到的效果,这种方法简单易行,是多数教师教学的首选方法。例1:在我们学习“余弦定理”中,教师做课程导入便可这样:上节课我们学习了正弦定理,知道了通过两条边及两条边的对角的计算,便可得到三角形边长和角度的所有数据,那我们想想如果只知道两边和这两边所夹的角,能不能求出第三边呢?由此引出余弦定理,进而得出余弦定理的适用范围。这便是一个成功的案例,我们通过对问题的抛出引出了本节课讲授的知识点,避免了直接讲授余弦定理的使用条件造成和正弦定理相混的情况。不但使课堂更有效率,对于学生的记忆也很有帮助。
(二)实际性的计算,给学生验证定理
对于错综复杂的定理,教师自己当初学的时候都有困难,更不用说是小我们十几岁的学生了,那么此时,我们如果将这些定理实际地让学生算一算,最后再告诉他们规律,那么对于学生的印象就会深刻许多。例2:同样是学三角函数,教师可以在课程导入时从直角三角形出发,分别计算各边与对角正弦值的比值,接着算锐角三角形,钝角三角形,学生惊奇地发现比值都是一样的,这就代表这是个普遍适用的规律,我们最后在引入正弦定理,相信通过这种方法,学生会比较容易接受。我们通过让学生自己动手计算,不但让他们自己发现规律,而且验证了正弦定理的普适性,所以在教学中,应自己探索有效的方法,让学生真正喜欢上教师的授课。
(三)发散性的思维,让学生自主探究
我们在情境创设中,发散思维也是很常见的方法,这提高了学生自主探究的能力,对创新性有很大的帮助。例3:我们在学习“数列”的时候,学习了等差数列。在学习等差数列中,最重要的就是通项公式,我们在教学中,先拿出几个等差数列的例子,让学生自主讨论他们的通项公式,共同检验公式正确与否,而后,教师给出写等差数列的方法,回头再次与学生给出的相比较,最后在反复探究中,得到写通项公式最快速的方式。这旨在引导学生的发散性思维,在数学中,发散性思维极其重要,毕竟数学不仅仅是一门死记硬背的科目,我们在情境创设中,多多少少给他们一些开发,对于他们以后的学习具有很重要的意义。
(四)用自身的体验,给学生难忘的经历
当讲述的内容不容易理解时,教师可以选择将它娱乐化。这样学生会在游戏中不知不觉体会到知识的价值。例4:当我们学习“排列组合”的时候,教师就可以进行课堂互动,让学生上前边来,演示各种排法,比如说红绿灯有多少种排列方式的问题,学生通过自己的体验回答是6种,那么我们就可以进一步引导,与3x2x1结果相同,这时我们便可以引导出求排列问题的方法。新课标下的数学课程,最重要的就是让学生有探索能力,有独自思考的能力,这些都是一个学生在人生中需要逐渐培养起来的意识,我想我们从现在开始加以引导,通过情境创设让他们多在这方面思考思考,争取为培养出一个全方面发展的人才做出贡献。
〈3〉高中数学教案课后反思简短
我将从以下几个方面说一说自己在教学中体会:
一、把握细节
曾听过细节决定成败,虽说有夸大其词的说法,但从另一方面说明细节的重要性。在一堂课之中这细节可能是某个问题——如反函数的提出,也可能是某个问题的解释——复合函数的单调性,也许是某个内容的先后问题——如分段函数的奇偶性的提出,也学是对学生的态度等。一堂课之中,细节处理的好一点,缺憾就少一点。
二、把握重难点
再讲复合函数的单调性时,要强调特殊到一般的认识过程。呈现的方式不拘泥于一种形式,复合函数的单调性涉及到多次对应,可以以表格的形式体现,也可以以集合的图示体现,但要强调要在区间中取值。从中学生可较为容易的理解——同增异减这一结论。如果为了加强理解可举具体的实例,根据定义结合参与复合的两个函数的单调性给出证明。
三、注重知识的系统化、综合化
每堂课都有许多知识点。就新课而言,每个知识点都可以进行变式、坡式的训练。单一的重复的训练是机械而且是没有多大益处的。重复有必要,但要适可而止。要在重复中提高,这就需要在系统、综合方面加强训练,以启迪、发散思维。如数学中常讲的含参数的问题,最值中涉及到二次函数轴动或是区间动的问题。一般而言,动态的问题要比静态的问题有难度。所以要在这方面逐步的渗透。
四、注意如何设置问题
设置问题是一节课的重要环节。根据内容设置一系列有梯度的问题。设置问题要注意的几个原则:①必要性;②针对性;③准确性;④层次性;⑤时效性;⑥创新性;⑦价值性;⑧逻辑性。如:如何把反函数给学生讲的通俗易懂。有一个角度:反解,原来的应变量变成了自变量,换言之坐标系发生了怎样的变化。可理解成沿某条直线翻转了一百八十度。
五、把握课堂环节
在课堂环节方面:要注意一堂课的'设计流程,注意每个环节的衔接,每个环节的解释。出示例题、问题、习题首先要留给学生思考的时间。其次自己要准备的特别的充分,特别的熟练,要有预见性,自信、从容,那种兴奋、冲动的热情,释放出愉悦的能量。学生什么情况都有可能出现,也许某一位同学是这里不理解,也许这位同学是那里不理解。要照顾到大多数的同学,而不是听到了从个别几位同学嘴里发出的声音就去讲下一个问题。出示例题、问题、习题之后就要想着如何启发学生,如何给学生释疑。如:再讲函数零点的时候,有这样的题判断方程根的情况,所给的方程是比较有特点的。这时学生可以想到,有些方程可以用求根公式或是因式分解或是换元的方法来确定方程的根。另一种思想便是转化的思想,转化成判断函数零点的问题。当然就是利用函数的图像,在这里极少或是没有同学可以想到将等式的两边分别看成相应的函数,若有,这样问题就转化成了看函数图像是否有交点。(励志的句子 M.dJz525.com)
课堂中有释疑这一环节,释疑时需要注意贴切,达到一个题眼一点就破的高度。范老师在解释“精确度”时就显得非常的自然、贴切,似乎这就是我们心中蒙蔽的想法(学生心中或者已有一些朦胧的模糊的纷乱的想法,只需要老师清晰的一理,他便会获得收获的兴奋、喜悦)。听了他的解释之后似乎有豁然开朗的感觉,而非是解释的越多,越像是在迷雾里打转。要在流程上,问题的设置、解释上,环节的衔接上积极下功夫。(听同事说三中推出新人的标准:干练、精准、严谨、激情)
六、注重教学方式、方法技巧的积淀
要想快速的汲取营养,最快的途径是向其他教师学习,取他人之长,最好的可以内化。他们有着老道的方式、方法及技巧。曾听办公室的同事说他如何解释反函数,听后即感清新。问他的问题,多有此感觉。有些问题值得潜下心来琢磨或是问一问同事是怎么处理的,不能拘泥于一处。
七、向同事学习
同事之中有许多经验丰富的教师,他们身上有许多可取之处,如他们的个性、独特、洒脱。细想一下他们的风格是如何形成的。在所处的学科组中有两位教学别具一格的教师。一位善于层层设问,精巧富有层次,丰富又系统,细致又不失大气。另一位则洒脱自如,点睛之语使人释然,不显章法,又有迹可循,综合中的变化,变化中的提升,一览众山小。这种层次性的设问,点睛之语值得学习。
〈4〉高中数学教案课后反思简短
今年是我走上教学岗位的第一年,这一年以来我一直是战战兢兢如履薄冰,生怕误人子弟。在这学期即将结束之时,在教授完高中数学必修3和必修4之后我有如下一些反思。
因为同我本人的学生时代相比较新的课程改革使课标从理念、内容到实施都有很大改变,作为一名数学教师应该充分认识数学课程改革的理念和目标。好在教学过程中不断地学习、调整、反思。
首先,应该把握好课程标准的要求,不自作主张改变课程标准的意图。例如私自增加课时,补充一些知识性的东西或增加教学的难度。这样做既不利于学生学习能力的提高,又束缚学生的思维还增加学生的负担。
其次,在教学过程中不能只注重定义、概念、结论的教学而忽略过程。如在对数运算性质的教学中,我更多地鼓励学生通过指数的'运算性质的复习引导学生通过各种途径,如类比、计算、猜测等方法去发现对数的运算性质。而不是直接给出对数的运算的性质然后再不断地进行机械训练。这样就不至于今天练了明天忘。学生对自己推导得到的运算性质就不一样了,他们能更加理解运算规律,熟记运算性质,熟练运用性质。
再者,在教学中不能单一的强调知识的系统性和逻辑性,却忽视学生的认知水平,对一些问题的引入常常单刀直入,让学生没有直观的映象,理解起来不容易接受,在这方面可以从一般到特殊给学生以直观映象帮助理解。这样也符合认知的一般规律。也可以利用多媒体辅助教学,因为多媒体可以把很多立体几何部分的图形直观形象地展示给学生,增加学生的感性认识。同时多媒体也可以有效的增加课堂的容量和减少我们的板书工作量。
最后,我觉得有很多的困惑和担心。在贯彻新课标的过成中,总会觉得学生的解题能力变得差了很多,但是学生的升学还是以成绩为依据的。不过这也提醒我们要时时刻刻真真诚诚的关心教育自己的学生,希望能为学生的长远发展铺好路。
〈5〉高中数学教案课后反思简短
开学两周了,经过开学后的适应,教学工作已经逐步进入了正常轨道。其实说是适应,只是我的适应,孩子们并没有表现出所谓的"开学综合征",开学近两周他们都表现得很棒!本来刚开学,担心孩子们收不回心来,一直布置很少的一点家庭作业,甚至有时候只是布置预习而已。当然,这样做也许也确实让孩子们能逐渐进入学习状态,避免出现开学倦怠或反感情绪。
在知识方面,原来担心孩子们对方程会有不适应或抵制情绪,结果孩子们都表现不错。方程解法的繁琐并没有让孩子们感到厌倦,因为虽说解方程书写步骤较多,但规律明显,顺向思维不需要过多的思维过程,抓住关键词列方程就迎刃而解了。最近主要的'问题是形如12-X=5或56÷X=14这样的方程,用等式的性质来解很别扭,而用传统的方法又怕孩子混淆。其实这个问题教材在设计时早有考虑,原则上这种类型的方程不做要求,因此课本上并没有出现这样的题目。但孩子们在解决问题时自己会列出这样的方程,只好临时先提醒孩子尽量避免列出X在减数或除数位置上的方程。这样做的目的并不是要刻意回避这种问题,而是考虑到孩子们对现在的方法还不够熟练,不宜教给他们另外一种全然不同的解法,这个问题且等孩子们熟练掌握了解方程的方法后再说吧!反正教材是不要求做这种题的。
还有个问题就是在解决问题时,算术方法与列方程的选择。最近一直在学习列方程解应用题,所以孩子们想当然地每道题都列方程解答。教材上虽然有一道题目是指导孩子体验理解用算术方法与方程方法解决问题的区别,能直接套用公式或顺向思维列式的就直接用算术方法解决比较简捷,用逆向思维考虑的问题可以用方程解决比较简捷。可能是由于初学,或者因为没有养成认真分析数量关系的习惯,孩子们在这方面还比较困惑,需要在以后的教学中指导孩子们逐步理解和掌握。慢慢来,不要急。
〈6〉高中数学教案课后反思简短
新课程标准理念要求教师从片面注重知识的传授转变到注重学生学习能力的培养,教师不仅要关注学生学习的结果,更重要的是要关注学生的学习过程,促进学生学会自主学习、合作学习,引导学生探究学习,让学生亲历、感受和理解知识产生和发展的过程.
- ▲88教案网精品档案:
- 高中数学教案课后反思简短 | 高中数学教案 | 高中数学教案模板范文 | 高中数学教学反思 | 高中数学教案课后反思简短 | 高中数学教案课后反思简短
所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法.每一堂课都要有教学重点,整堂的教学都应该围绕着教学重点来逐步展开的。教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,教师应该采取一种最通俗易懂的,最适合自己学生的教学方法来讲授,也可以从多个方面来讲解,重要的是要配以基础,经典的习题,当然适当地插入与此类知识有关的笑话那是最好不过了,使学生对所学内容在大脑中留下深刻的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。在选择例题和习题时最好能从易到难呈阶梯式展现。这既符合学生的认知规律,对突破教学难点也是有帮助的`。课堂上学生是主体,老师是主导,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动为主动,让学生成为学习的主人,教师成为学习的领路人。在一堂课中,教师要做到精讲,尽量少讲,让学生多动脑,多动手。否则容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。
很多教师把主要精力放在难度较大的综合题上,而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。结果却是多数学生不但“悟”不出方法、规律,而且只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。众所周知,近年来高考数学试题越来越新颖,越来越灵活,如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。另外现在的试题量过大,有些学生往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。因此在切实重视基础知识的落实的同时应重视基本技能和基本方法的培养。
总之数学教学中需要反思的地方很多,我们在教学过程中只有勤分析,善反思,不断总结,我们的教育教学理念和教学能力才能与时俱进。
〈7〉高中数学教案课后反思简短
紧张有序的高二教学工作已经结束了,经受了磨砺和考验的我,在各个方面都得到了很大的提高,尤其是学科知识的理解和业务水平方面更有了进步。
这一年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时积极主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高。尽管我在教学中小心谨慎,但还是留下了一些遗憾。
经过一番深思,我个人觉得高二数学教学,应该理顺知识网络。因为高考命题是以课本知识为载体,全面考查能力,所以,促进学生对基本知识、基本概念和基本方法的巩固掌握相当关键。我从中得到的教学反思如下:
一、重基础知识、基本方法和基本思想
通过一年来的高二的数学教学,以及对高考试题研究分析发现,数学考查的多是中等题型,占据总分的百分之八十之多,所以我认为,对于大多数的学生作好这部分题是至关重要的。
二、指导好学生对教材的合理利用
数学考试考查点“万变不离教材”,许多的试题就来源于教材的例题和习题,提高学生对教材的重视的同时,关键做好学生的学习指导工作,对于教材的改造和加工至关重要,先整体把握全教材的章节,再细化具体的内容,用联想的方式,对于详略的处理交代清楚,使学生在自己的头脑中构建知识体系,理解解题思想和知识方法的本质联系,提高实际运用能力非常重要。
三、理解知识网络,构建认识体系
各知识模块之间不是孤立的,我们要引导学生发现知识之间的.衔接点,有的在概念外延上相连,有的在应用上相通等,把已有知识连成一个完整的体系,在解决问题时便会左右逢源,如鱼得水。
四、高度重视新课程新增内容的复习
在新课程试题中,有些题目属于新教材和旧教材的结合部,在高考命题中采用新旧结合的方法。例如函数的单调性问题既可以用导数解决也可以用定义解决。立体几何问题的处理既可以用传统方法也可以用向量方法。只有重视和加强新增内容的复习,才能紧跟教改和高考改革的步伐,提高学生的认知能力和思维能力。
在自己作题时有意识的找出最佳方法,尽量不要有较大的思维跳跃,同时结合参考题解加以取舍,也可以把精彩之处或做错的题目做上标记。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。
〈8〉高中数学教案课后反思简短
高中数学新课程标准指出要注重学生数学能力的培养,强调学生对数学知识的应用,发展数学应用意识,而高中学数学最常见直接有效的方法就是探究法,这与数学建模有很多相同点,本文主要讲解信息技术与高中数学建模有机整合,实现有效教学。
一、数学建模定义
所谓数学建模就是创建一个数学模型的全过程,即当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的语言、符号及方法去近似地刻画该实际问题,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。在数学建模中,很多内容与运动变化有关,传统教学方式缺乏有效的手段处理这类问题,而信息技术的利用,为解决这一难题提供了有力的工具。
二、Excel在高中数学建模中的运用
Excel软件是常用的办公软件,操作简单,易于高中教师掌握的一种理财、数学分析软件,它在高中数学建模中有着广泛的应用,如单变量求解、回归分析、线性规划、非常规方程求解等。
三、几何画板在高中数学建模中的运用
几何画板是一个适用于数学教学的软件平台,为教师和学生提供了一个探索几何图形内在关系的环境。它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画和跟踪轨迹等方式,能显示或构造出较为复杂的图形。数学问题的本质往往是非常抽象的,怎样把抽象的概念形象化、具体化,使以前认为模棱两可的结论更为直观化呢?这就是高中数学教师要探究和摸索的问题。往往老师在实际教学过程,可以利用几何画板来让学生自己研究一些简单而有趣的`问题,使概念形象化,数形结合,让结论更直观化,也激发学生学习积极性,收获更好的教学效果,同时提高学生自主学习、主动思考的能力。高中数学新课程标准提出应利用信息技术来呈现以往教学中难以呈现的课程内容,在保证笔算训练的前提下,尽可能使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。信息技术与数学建模和数学探究有机结合的教学有利于激发学生学习数学的兴趣,有利于培养学生的数学应用意识,提高解决实际问题的能力;信息技术在数学建模思想意识培养中发挥了重要的作用,主要是提供了有力工具和技术支持,它是更好更快进行建模的基础。
〈9〉高中数学教案课后反思简短
必修3是高中数学比较特殊的一部分内容,既增添了新内容——算法,老内容统计和概率的内容和安排也发生了一些变化。下面就自己的教学过程谈一谈对必修3的体会与反思。
1、第一章的教学主要还是要把握好教学要求,围绕程序框图这一核心,以具体案例为载体,使学生在解决具体问题的过程中,学会基本逻辑结构和算法语句的用法,从中体会算法的思想,提高逻辑思维能力,不必要搞太难的算法设计,因为在其它章节中,算法思想也是要渗透的,学生有较多的机会接触算法问题.至于高中数学引入算法的理由,我体会还是在于算法思想所体现的很强的逻辑性对提高学生逻辑思维能力的作用,而不在于学会多少程序语言或程序设计.所以还是应该关注算法的'“数学味”.
2、在第二章的教学中,感到学生虽然知道各种统计量(平均数、标准差、回归方程等)的计算方法,但理解其中蕴涵的统计思想却很难,不能自觉的形成统计观念和概率思维.因此,在统计教学中,要更多地关注在“计算”后,让学生对结果的含义作出解释.实际上,课本在这方面是有示范的.例如,在讲完“众数、中位数、平均数”后,课本有一个关于某企业职工工资待遇的“探究”栏目,还配了某市公路项目投资数据的利用方面的练习等,在教学中可让学生对这些问题开展讨论,并让他们举一些类似的问题.通过讨论,学生认识企业老总利用数据设置的陷阱在哪里,应当如何理解和使用数据特征等.
3、概率的教学,离开了具体案例寸步难行,要让学生在具体案例中体验概率有关问题的情景,在案例中发现问题、解决问题,亲身体验案例情景,以激发兴趣。在实际教学中一方面要尽量创设情境,采用案例教学的基本方式展开教学,通过大量的具体案例来帮助学生理解;另一方面要设计一些活动,让学生经历统计的全过程,在学生合作学过程中,学生既要独立思考,自主探索,又要在解决实际问题中与别人合作、交流。例如:在教学《确定事件与不确定事件》中,让学生通过一系列的案例理解概念。太阳从东边升起,抛起的篮球会下降等等一定会发生的事件就是可能事件,太阳从西边升起,公鸡下蛋等一定不会发生的事件就是不可能事件。让学生在具体案例中体验概念。
- 需要更多的高中数学教案课后反思简短网内容,请访问至:高中数学教案课后反思简短
文章来源:https://m.jab88.com/j/234003.html
更多