八年级上册数学角的平分线的性质学案
【学习目标】:
1、掌握尺规作图作角平分线
2、通过探究理解角平分线的性质并会运用
【学习重点】:掌握尺规作图作角平分线、理解角平分线的性质.
【学习难点】:理解角平分线的性质并会运用。
【课前自学、课中交流】
一、自主学习
自学:教材P19—21
1、下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?
分析:要说明AE是∠DAB的平分线,其实就是证明∠CAD=∠CAB,∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了。
证明:
二、合作探究
1.尺规作已知角的平分线的一般方法:
已知:∠AOB,
求作:∠AOB的平分线OC
作法:(1)
(2)
(3)
依据:证明:
(1)在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?
(2)第二步中所作的两弧交点一定在∠AOB的内部吗?
(3)能否用同样的方法做以下角的角平分线呢?
2.角平分线的性质
方法一、
请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
(1).折出如图所示的折痕PD、PE.
(2).你与同伴用三角板检测你们所折的折痕是否符合图示要求.
问题1:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?
问题2:你能用文字语言叙述所画图形的性质吗?
问题3:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话。
提示:该命题的已知(题设)和求证(结论)是什么?
∵OC平分∠AOB,PD⊥OA,PE⊥OB,
∴PD=PE.
方法二、
如图,作∠AOB的角平分线OC;
(1)请你在OC上任意找一点P,作PD⊥OA、PE⊥OB,垂足分别为D,E.度量比较PD与PE的长短,得PDPE(,,=)
(2)在OC上另取一点Q,同样作QF⊥OA、QG⊥OB,垂足分别为F,G.再比较QF、QG的长短,得QFQG(,,=)
(3)你可以在角平分线OC上再取其它一些点试试,从中你发现了什么?用你自己的语言叙述.
3.用三角形全等证明性质,
已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于D,PE⊥OB于E
求证:PD=PE
证明:∵PD⊥OA,PE⊥OB,
∴∠PDO=__________=________.
∵OC平分∠AOB
∴∠AOC=∠BOC
在△PDO和△PEO中,
____________
____________
____________
∴△______≌△______(AAS).
∴PD=PE.
4.解后思考:证明一个几何命题的步骤有那些?
①、
②、
③、
1.结合图ll.3—2完成填空:
∵点P在∠AOB的平分线上,
∴_________
____________
2.如图11.3—4,在△ABC中,∠C=900,AC=BC,AD平分∠CAB.交BC于点D,DE⊥AB于E,若AB=6cm.则△DBE的周长是()
A。6cmB.7cmC.8cmD.9cm
3.如图所示OC是∠AOB的平分线,P是OC上任意一点,问PE=PD?为什么?
4.如图,已知AD是△ABC的角平分线,且D为BC的中点,DE⊥AB,DF⊥AC,求证:BE=CF
5.如图,△ABC的角平分线BM、CN相交于点P。求证:点P到三边AB、BC、CA的距离相等。探究:点P在∠A的平分线上吗?为什么?
证明:
【课后作业】第22页习题11.3第1题,第23页第4题
【课后反思】通过本节课的学习,我的收获和困惑是:
【课后反思】通过本节课的学习,我的收获和困惑是:
精选阅读
角平分线的性质
为了促进学生掌握上课知识点,老师需要提前准备教案,大家在仔细规划教案课件。将教案课件的工作计划制定好,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?急您所急,小编为朋友们了收集和编辑了“角平分线的性质”,仅供参考,欢迎大家阅读。
教学目标
1.了解角平分线的性质,并运用其解决一些实际问题。
2.经历操作,推理等活动,探索角平分线的性质,发展空间观念,在解决问题的过程中进行有条理的思考和表达。
教材分析
重点:角平分线性质的探索。
难点:角平分线性质的应用。
教学方法:
预学----探究----精导----提升
教学过程
一创设问题情境,预学角平分线的性质
阅读课本P128-P129,并完成预学检测。
二合作探究
如图,OC为∠AOB的角平分线,P为OC上任意一点。
提问:
1.如何画出∠AOB的平分线?
2.若点P到角两边的距离分别为PD,PE,量一量,PD,PC是否相等?你能说明为什么吗?
让学生活动起来,通过测量,比较,得出结论。
教师鼓励学生大胆猜测,肯定它们的发现。
归纳:角平分线上任意一点到角两边的距离相等。
三想一想,巩固角平分线的性质
三条公路两两相交,为更好的使公路得到维护,决定在三角区建立一个公路维护站,那么这个维护站应该建在哪里?才能使维护站到三条公路的距离都相等?
三做一做,拓展课题
如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。
让学生充分讨论,鼓励学生自主完成。
教师归纳:
因为射线AP是△ABC的外角∠CAE平分线,
所以PD=PE(角平分线上的点到角两边的距离相等)
所以PB+PD=PB+PE
又PB+PE>BE(三角形两边之和大于第三边)
所以PB+PD>BE
思考:若CP也平分△ABC中的∠ACB的外角,则射线BP有怎样的性质?点P又有怎样的位置?
四课堂练习
课本P130练习
五小结
本节课学习了角平分线的性质:角平分线上的点到这个角两边的距离相等,反过来,到一个角两边距离相等的点,在这个角的平分线上,三角形的三条角平分线交于一点,且这一点到三角形三边的距离相等。
六作业
1.课本P130习题A组T1,T2
2.基础训练同步练习。
3.选作拓展题。
七课后反思:
新旧教法对比:新教法更有利于培养学生合作学习的能力。
学生对于角平分线的性质可以倒背如流,但就是容易把到角两边的距离看错,在以后的教学中要多加强对距离的认识。
学案
学习目标:
1了解角平分线的性质。
2并运用角平分线的性质解决一些实际问题。
预学检测:
1角平分线上任意一点到相等。
2⑴如图,已知∠1=∠2,DE⊥AB,
DF⊥AC,垂足分别为E、F,则DE____DF.
⑵已知DE⊥AB,DF⊥AC,垂足分别
为E、F,且DE=DF,则∠1_____∠2.
学点训练:
1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()
A.PC=PDB.OC=OD
C.∠CPO=∠DPOD.OC=PC
2.如图,△ABC中,∠C=90°,AC=BC,
AD是∠BAC的平分线,DE⊥AB于E,
若AC=10cm,则△DBE的周长等于()
A.10cmB.8cmC.6cmD.9cm
巩固练习:
已知:如图,在△ABC中,∠A=90°,AB=AC,
BD平分∠ABC.求证:BC=AB+AD
拓展提升:
如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。
角的平分线的性质学案
1、通过探究理解角平分线的性质并会运用
2、掌握尺规作图作角平分线
1、怎样用尺规作角的平分线?
2、角的平分线上的点到角的两边的距离有什么关系?
(一)课前巩固
1、如图,AB=AD,BC=DC,求证AC是∠DAB的平分线
(二)自学:教材P19
(三)用尺规作一个角的平分线
1、已知:∠AOB,2、练习,画出下列角的平分线
求作:∠AOB的平分线OC
3、练习,教材P19
角平分线的性质
1、探究,教材P20
2、归纳,角平分线的性质是:角平分线上的到角两边的相等。
3、用三角形全等证明性质,
如图,已知:∠BAF=∠CAF,点O在AF上,OE⊥AB,OD⊥AC,垂足分别为E,D.求证:OE=OD
证明:F
符号语言:
△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F,求证EB=FC
如图,△ABC的∠B的外角平分线BD与∠C的外角的平分组CE相交于P,求证点P到三边AB,BC,CA所在直线的距离相等。
《角平分线的性质》导学案
《角平分线的性质》导学案
一、教学目标
(一)知识与技能
1.会作已知角的平分线;
2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;
3.会利用角的平分线的性质进行证明与计算.
(二)过程与方法
在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.
(三)情感、态度与价值观
在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.
二、教学重点、难点
重点:角的平分线的性质的证明及应用;
难点:角的平分线的性质的探究.
三、教法学法
三步导学的教学模式;自主探索,合作交流的学习方式
四,教学过程:
(一)复习:
(1)点到直线的距离:P
ABCD
2.角平分线的概念:A
OC
3.根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)
A
(二)新授
1.利用尺规作图:作出一只角的角平分线
A
MD
ONC
2.探究:
(1)折一折:将∠AOB对折,再折出一个直角三角形(使第一条折痕为直角边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
(2)画一画
画一∠AOB的角平分线OC,点P在OC上任意一点,取点P的三个不同位置,过P点做垂线段PD.PE。并测量PD.PE的长。将三次数据记录下来,你会有什么发现?
A
C
O
B
(3)理论证明:
已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E
求证:PD=PE
结论:角平分线上的点到角两边的距离相等
几何语言:
∵∠1=∠2,
PD⊥OA,
PE⊥OB(已知)
∴PD=PE(全等三角形的对应边相等)
实践应用
例。如图△ABC中的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等,A
N
M
P
BC
三,当堂检测练习:
(1)下列描述对不对?
已知如图,AD平分∠BAC.DC⊥AC.DB⊥ABB
求证:DB=CD
证明:(1)∵AD平分∠BAC
∴DB=CDD
(2)∵DC⊥AC.DB⊥AB
∴DB=CD
(3)∵AD平分∠BAC
DC⊥AC.DB⊥ABAC
∴DB=CD
2.如图1,∠1=∠2,PD⊥OA.PE⊥OB,垂足分别是D.E。结论:(1)PD=PE
(2)0D=OE(3)∠DPO=∠EPO(4)PD=POA
D
正确的有:————————————————————————
P
O
EB
2.如图2,在△ABC中,AD平分∠BAC,DE⊥AB于E,且DE=5.8cm,BC=11.2cm,则BD=————————B
E
D
CA
文章来源://m.jab88.com/j/63112.html
更多猜你喜欢
更多-
角平分线的性质 为了促进学生掌握上课知识点,老师需要提前准备教案,大家在仔细规划教案课件。将教案课件的工作计划制定好,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?急您所急,小编为朋友们了收集和编辑了“角平分线的性质”,仅供参考,欢迎大家阅读。教学目标1.了解角平分线的性质,并运用其解决一些实际问题。2.经历... - 角的平分线的性质学案 1、通过探究理解角平分线的性质并会运用 2、掌握尺规作图作角平分线 1、怎样用尺规作角的平分线? 2、角的平分线上的点到角的两边的距离有什么关系? (一)课前巩固 1、如图,AB=AD,BC=DC,求... 高中三角函数的教案 12-24
- 《角平分线的性质》导学案 《角平分线的性质》导学案 一、教学目标 (一)知识与技能 1.会作已知角的平分线; 2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质; 3.会利用角的平分线的性质进行证明与计算. (二)... 高中三角函数的教案 12-01
- 角的平分线的性质 每个老师需要在上课前弄好自己的教案课件,大家在认真写教案课件了。对教案课件的工作进行一个详细的计划,才能对工作更加有帮助!有多少经典范文是适合教案课件呢?以下是小编为大家精心整理的“角的平分线的性质”,仅供参考,欢迎大家阅读。12.3角的平分线的性质1.角的平分线的性质内容角的平分线上的点到角的两边... 高中三角函数的教案 12-08
最新更新
更多-
二年级数学上册《森林聚会练习课》教案 二年级数学上册《森林聚会练习课》教案 课型:练习课。 教学内容:理解平均分,课本第50页。 教学目标: 1、结合已有的生活经验,初步理解平均分的含义。 2、能用除法解决有关的实际问题,初步培养发现问... - 3.3分式的加减法(2)学案 3.3分式的加减法(2)
课型:新授学生姓名:_________
[目标导航]
1、学习目标
(1)知识目标:
①经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中... 小学减法的教案 12-17
- 经典初中教案角平分线的性质
- 瓦尔登湖 瓦尔登湖 ※教学设想: 本课重在景色描写,较易理解。故在介绍作者、布置生字词以后,将全课内容设计为一套阅读练习题,由学生自读课文后独立完成,最后再由教师评讲,再阅读有关评价文章。这样作,是为了培养学生... 小学语文微课教案 12-17
- 第二课时《对称图形》 教学内容:课本P68例2及练习十五中相应的练习。 教学目标: 1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。 2、学生理解对称轴的含义,能画出轴对称图形的对称轴 3、学生的观察能力、想象... 高中牛顿第二定律教案 12-17
- 《直面苦难》教案 《直面苦难》教案 教学目标: 1、了解作者其人 2、仔细阅读文本,感悟文中蕴涵的人生哲理 教学难点: 体会文中蕴涵哲理的语句 一课时 一、导入 ppt杏林子的图片,配以文字说明 (穿插:我们看这张图片... 高中教案教案 12-17
- 简单的图案设计教案 第三章图形的平移与旋转 总课时:7课时使用人: 备课时间:第四周上课时间:第五周 第7课时:简单的图案设计 教学目标 一)知识与技能: 1.了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图... 简单的教案小学 12-17
- 角平分线的性质教案
- 5 柳永词两首 5 柳永词两首 名师导航 内容感知 钱塘(今浙江杭州市),从唐代开始便是历史上著名的大城市,到了宋代又有进一步的发展。柳永在杭州生活过一段时期,对杭州的山水名胜、风土人情有着亲身的体验和深厚的感情。在... 高中诗经两首教案 12-17
- 装在套子里的人学案及答案 高一语文学案《装在套子里的人》 1.下列词语书写全都正确的一项是() A.辨护祈祷陶冶战战兢兢B.辖制周济怂恿没精打彩 C.性情孤僻通霄安然无恙D.郁闷滑稽讥诮六神不安 2.选词填空 A.为了避免我们... 小学古诗及教案 12-17
- 三角形的边与角 第九讲三角形的边与角 三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知... 小学三角形教案 12-17
