88教案网

乘法交换律的教案

乘法交换律的教案。

作为一位杰出的老师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么问题来了,教学设计应该怎么写?下面是小编帮大家整理的《乘法结合律和交换律》教学设计,欢迎阅读与收藏。

乘法交换律的教案 篇1

教学内容

四年级(下册)第61~62页。

教学目标

1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

教学过程

一、复习旧知、导入新课

1.出示:

你能在下列的内填上合适的数吗?

28+320=320+;

(27+138)+62=27+(+);

35+=+35。

提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

2.出示:

在下列○内填上合适的运算符号。

4○10=10○4(2○3)○5=2○(3○5)。

谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

3.导入新课。

谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】

二、举例验证探索规律

(一)探索乘法交换律。

1.情景中感知乘法交换律。

出示例题。(略)

谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

学生列式:3×5=15(人)或5×3=15(人)。

提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

板书:3×5=5×3。

【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

2.举例验证。

谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

学生举例。

引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

学生交流,教师选择一些等式板书。

电脑验证大数相乘的结果。

谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

3.总结规律。

讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

板书:a×b=b×a。

提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】

4.回忆乘法交换律在过去学习中的运用。

谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】

(二)探索乘法结合律。

1.初步感知。

谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

出示例题。(略)

谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

2.引导比较。

提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

板书:(5×3)×4=5×(3×4)。

3.举例验证。

谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

组织交流,教师有选择地板书一些等式。

4.总结规律。

讨论:

(1)你发现等号两边的算式中什么不变,什么变了?

(2)你能从这些算式中发现什么规律?

师生共同归纳乘法结合律。

板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

板书:(a×b)×c=a×(b×c)。

【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】

乘法交换律的教案 篇2

设计说明

根据学生的认知规律,在教学中我坚持“以学生为主体”的理念,突出“以学生发展为本”的教学思想,整个教学过程以学生自主学习、自主探究为主,通过学生的观察、验证、归纳、运用,让学生感受数学问题的探究性和挑战性。

1.猜谜激趣,唤醒旧知。

数学与生活有着密切的联系,借助生活中的现象激发学生探究数学的欲望,可以起到事半功倍的效果。在导入新课时,教师口述谜语,以猜谜的形式引入,有利于激发学生的学习兴趣。当学生猜出是纽扣之后,教师顺势牵引到数学学习中,让学生回忆:在数学学习中,哪个知识点涉及到交换位置呢?通过这样的提问,唤起学生对已有知识的回忆,同时也为学生的知识迁移埋下伏笔。

2.知识迁移,探究体验。

探究数学规律是有过程的,对于这个过程的认识不是教师传授的,而是学生自己体验和感受的,对学生已有的体验和感受及时地归纳总结是提高探究能力的重要环节。本节课突出“以学生发展为本”的教学思想,在教师的引导下,利用学生已经掌握的加法运算定律进行知识迁移,学生通过猜想,探究、归纳出乘法交换律和乘法结合律,并理解其作用,为后面的简便计算作铺垫。

课前准备

教师准备多媒体课件课堂活动卡

教学过程

⊙猜谜引入,揭示课题

师:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。请同学们想一想,这是什么?(生积极举手,低声喊“纽扣”)

师:你为什么会想到是纽扣?(纽扣扣错了,衣服穿出去会很难看,会让人笑话)

师:纽扣交换了位置,就会产生笑话,我们刚学的加法运算定律也和交换位置有关。谁能将加法交换律说给同学们听听?(交换两个加数的位置和不变,这就是加法交换律)

师:用字母如何表示加法交换律和加法结合律?乘法有没有类似的规律呢?今天我们就一起来探究一下与乘法有关的运算定律。(板书课题)

设计意图:

用谜语拉开学习的序幕,既激发了学生学习的兴趣,又活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生探索规律作好了知识铺垫。

⊙探究新知

1.解读主题图,引出例题。

(1)(课件出示主题图)观察主题图,说一说,主题图中给出了哪些信息?(一共有25个小组,每组里4人负责挖坑、种树……)

(2)你能根据主题图提出哪些问题?

(教师引导学生提出例5、例6的问题)

①负责挖坑、种树的一共有多少人?

②一共要浇多少桶水?

2.教学乘法交换律。

(1)课件出示例5:负责挖坑、种树的一共有多少人?

(2)要想解决这个问题,需要哪些条件呢?

(一共有25个小组,每组里4人负责挖坑、种树)

(3)先想一想,再列式计算,然后在小组内相互交流。

(4)指名汇报计算过程和结果。

汇报,可能有两种列式方法:

方法一4×25。

方法二25×4。

师:两个算式的结果是否相等?两个算式之间可以用什么符号连接?你还能举出其他这样的例子吗?

生1:两个算式的结果是相等的,可以用等号连接。

生2:我列举的算式是8×25=25×8=200。

师:你能从中发现什么规律?能给乘法的这种规律起个名字吗?(学生总结,教师引导,课件出示后学生齐读,师板书:两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律)

(5)你能试着用字母表示吗?(学生汇报用字母表示:a×b=b×a)

(6)我们在原来的学习中用过乘法交换律吗?(用过,在进行乘法验算时)

(7)反馈练习。

①下面有两道题需要同学们运用乘法交换律进行填空。(教材25页“做一做”中第一排的两道题)

②数学小游戏。

师:同学们的表现不错,所以老师决定做游戏奖励你们,这里有几道题,如果你认为这道题运用了乘法交换律就举手,如果你认为这道题没有运用乘法交换律就不举手。

3×15=5×9a×b=b×a

34×0=0×348×3×9=8×9×3

3.教学乘法结合律。

师:加法有交换律和结合律,乘法也有交换律,那么乘法还可能有什么运算定律?选择例6作为研究对象来探究一下。

(1)课件出示例6:一共要浇多少桶水?

(2)要想解决这个问题,需要哪些条件呢?(一共有25个小组,每组要种5棵树,每棵树要浇2桶水)

(3)先想一想,再列式计算,然后在小组内相互交流。

学生独立解答,可能会出现两种不同的方法:

方法一先求一共种了多少棵树,再求一共要浇多少桶水。

(25×5)×2

=125×2

=250(桶)

方法二先求每组要浇多少桶水,再求一共要浇多少桶水。

25×(5×2)

=25×10

=250(桶)

(4)在这两个算式中,你们发现了什么?根据课件出示的活动卡,小组合作寻找规律。

出示小组合作学习的活动卡。(见课堂活动卡)

(5)小组汇报。

小组1:我们小组发现这两个算式的结果是一样的。

小组2:我们小组发现这两个算式的数字、运算符号、数字顺序、结果都相同,只有运算顺序不同。

小组3:我们小组发现三个数相乘,先乘前两个数,或者先乘后两个数,积不变。我们还举例进行了验证,如(30×5)×4=30×(5×4),125×(8×4)=(125×8)×4。

小组4:我们小组也发现了这个规律,并且根据加法结合律我们给这个规律起了个名字,叫乘法结合律。

师:同学们合作学习的成果真不少,你们发现的这个规律就是乘法结合律。

教师根据学生的汇报,板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

用字母表示:(a×b)×c=a×(b×c)

(6)反馈练习。

教材25页“做一做”中第二排的两道题。

提问:做这两道题时,你运用了什么运算定律?

设计意图:

在教学过程中,采用小组合作的学习方式,通过观察、比较、举例、验证等活动,使学生在解决具体问题的过程中掌握乘法交换律和结合律,既关注了学生探究的过程,又培养了学生归纳概括的能力。

乘法交换律的教案 篇3

教学目标

1、通过练习,使学生进一步掌握简便计算的方法,并能根据数的特征灵活的运用乘法交换律和结合律进行计算。

2、通过简便计算的推理过程,提高学会应用公式进行简算的能力。

教学过程:

(一)独立口算

“练习四”第1题

让学生独立完成,然后全体进行校对,接着让学生说出各组数的特点:第一组最基本的步骤是5×2,第二、三组分别是25×4和125×8。看到这些计算结果,你想到了什么?

(二)启迪计算

从口算训练引入,揭示课题--乘法中的简便计算练习。接着老师提出目标。

(三)分层训练

1、应用乘法结合律为主的简算。

教材第3题:用简便方法计算。

4×(19×50)250×3640×2×75×5

(8×16)×125125×4825×6×40×3

先审题,说一说哪几道是同一类型的题目,分别怎样计算?

讨论后由学生同桌合作,各选择每一组中的一组进行计算,完成后相互批改。

2、运用乘法交换律的简算。

课本第2题,用简便方法计算。

由学生独立完成,比一比哪一组全对的同学多。学生完成

后检查并自批。教师巡视纠错,最后校对,评比哪一组全对的人数多。

3、小结反思。通过以上两组乘法中的简便计算,你认为已学

的`乘法中的简算有哪些特征?依据是什么?

回答问题时同学之间互相补充。回答2时学生口答乘法交换律和结合律的文字叙述和字母公式。

回答后再让学生根据简算特征编几道可简算的题目。

4、综合应用

在第三步编题的过程中,教师再问在连加和连减中我们还

学到过怎样的简便计算?让学生举例,并说出依据,如324-127―173,428―(128+253),484+347+216+453,教师板书学生的算式,然后学由学生口算出结果并说出依据。

独立完成第4题,并补充:计算24×13×50。教师巡回纠错,校对时重点讲评:125×32×5

=125×(8×4)×5

=(125×8)×(4×5)

=1000×20

=20000

补充题学生可能会计算成24×13×50=(24×50)×13=1000

×13=13000。学生指出错误并订正后,教师讲评计算时一定要注意数据的特征与变化,不能想当然的做。

5、应用题,课本第5题。

学生读题后独立完成,教师巡回辅导后进学生,完成快的

同学说一说思路,完成后指名学生说一说思路和简算的依据,列式为24×5×20=24×(5×20)=24×100=2400或直接列为24×(5×20)。

(三)总结

今天这节课重点练了哪些内容,你还有什么不懂的地方吗?

(四)作业

《作业本》[12]

乘法交换律的教案 篇4

教材分析

学生在前几年的学习中对乘法交换律已经有了初步的认识,知道了两个因数交换位置积不变的知识,这节课是正式概括出任意两个例子让学生观察,从中发现对任意两个整数相乘有同样的性质,进而总结出“乘法交换律”这个术语。

1和0在乘法中都具有特殊性,要通过让学生进行口算观察,让学生明白、发现特殊的地方

本节课主要是让学生在观察、比较、讨论、概括、应用中学习知识。

学情分析

乘法交换律的教学要敢于放手让学生自主探索,通过计算从几组算式间的联系发现并总结规律,逐步概括出乘法的交换律,最后抽象出用字母表示的定律。它是由学生经过自己探索得到的,在学生心中就有实感,有了实感就有认识,有了认识就有理解学生理解了才能运用,理解得透彻就能熟练运用。

教学目标

1,使学生理解和掌握乘法交换律,并能运用它进行验算。

2,借助观察、比较、概括等方法培养学生的分析推理能力。

3,培养学生运用新知识解决实际问题的能力。

教学重点和难点

教学重点:使学生理解并运用乘法交换律。

教学难点:乘法交换律的熟练使用。

教学过程

一,猜谜引入

1,猜谜:“兄弟四五个,各有各的家,有谁走错门,让人笑掉牙。”

让学生回答谜底(纽扣)

师:你为什么会想到纽扣?

生:(因为扣错纽扣了,衣服穿出去会让人笑话)

师:纽扣交换了位置会闹笑话,我们刚学了什么运算定律也和交换位置有关系?谁愿意把加法交换律说给同学们听?

(要求举例说明,并用字母表示)

2,师:今天我们一起来学习乘法有哪些运算定律,谁愿意猜猜?

学生:可能有乘法交换律和乘法结合律。

师:你们怎么会想到有乘法交换律和乘法结合律的?

学生:(根据加法中的运算定律来猜的)

师:你们能根据加法中的运算定律,大胆来猜想乘法中有什么运算定律,

这份勇气是值得肯定的也是值得表扬的,那么你们认为什么是乘法交换律,什么是乘法结合律呢?

(让学生说一说,能说多少就多少)

二,验证猜想

验证乘法交换律

1,师:同学们说得好像有道理但是你们的猜想到底对不对?乘法是不是具有你们猜想的运算定律呢?怎样确认你们自己的猜想呢?

你们想不想自己来亲自验证一下呢?

好,下面我们就来研究“乘法交换律”,我们分组合作完成这个光荣而又有意义的任务。

(要求:独立思考,想出自己的验证方法,把它写下来)

每人都把自己的想法告诉自己的合作伙伴。

比一比,看谁的验证方法最好,让他作为组代表向全班汇报。

2,学生分组研究,教师巡视指导。

3,汇报

学生可能出现的情况:

(1)我们小组经过讨论认为乘法有交换律,比如:3×5=5×3,6×2=2×6等等,两个因数的位置变了,但它们的积不变.

(2)我们也找了两个数,将它们相乘发现两个因数的位置变了,但它们的结果是相等的.

(3)我们小组也认为乘法有交换律,比如,我们班有四个小组每组有9人,求全班有多少人?可以列成算式:4×9=36,也可以用9×4=36来计算.这就是说4×9=9×4,因此乘法和加法一样有交换律.

(4)根据乘法口诀,一句乘法口诀可以算两道乘法算式,如四七二十八能算4×7=28,7×4=28.

(5)我们想到的是乘法验算时,交换因数的位置再乘一遍积是一样的,所以乘法有交换律.

(6)解决问题时,一个问题可以列两个算式,.

(7)看图列式时,一个图也可以列两个算式..

(教师根据学生发言板出算式)

师:(总结方法)有没有不同意见?(如有不同意见的,请认为乘法没有交换律的同学发言)

师:看来乘法确实有交换律,我们的数学家也通过大量的研究证明乘法是有交换律的,你们一样很了不起.

师:经过刚才的研究和验证,你们现在能用自己的语言描述一下“乘法交换律”吗?

(两个数相乘,交换两个因数的位置,积不变)

你们能用字母来表示这个运算定律吗?板书:a×b=b×a

三,课堂练习

第35页做一做

四,课堂总结

今天的学习你有什么收获?需要注意什么问题?

乘法交换律的教案 篇5

【教学目标】

1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

3、会用乘法分配律进行一些简便计算。

【教学重点】

自主发现乘法分配律,并能用字母表示。

【教学难点】

发现并让学生自己归纳乘法分配律

【课前准备】

口算练习题,幻灯片

【教学过程】

一、新知导入

师:请同学们进行口算练习(指名回答)

5×2=25×2=

5×4=25×4=

15×2=16×5=

15×4=45×2=

75×4=125×8=

师:请同学们观察这一组口算练习有什么特点。

生:他们的结果都是整十整百整千的数。

师:同学们的观察真仔细,像这样2个数相乘结果是整十整百整千的数,都是好朋友,这些好朋友今后都会帮助我们来运算,我们都应记住。这里特别的请大家记住三对好朋友:5×2、25×4、125×8。

师:上节课,我们进行了有趣的探索活动,发现了很多奇妙的规律,在我们的数学运算中,还有很多规律,我们这节课就继续探索和乘法有关的知识,相信大家一定会有新的发现。(板书:探索与发现)

二、新知探索

师:同学们玩过玩具积木吗?(M.36Gh.com 合同范本网)

生:玩过。

师:你会用积木搭些什么呢?

学生回答自己用积木搭过的物体。

师:老师也用小正方体积木搭了一个立体图形。大家一起来看看。(课件出示书上的情境图)

师:你能看出老师搭的是什么形状吗?

生1:正方体。

生2:不对,是长方体。

师:真好,你们观察得真仔细!那么这个长方体是由多少个小正方体组成的呢?你们是怎样计算得到这个答案的呢?请同学们每个人动笔算一算。

(师将学生的多种算法板书在黑板上,板书:从上面看:3×5×4

从前面看:5×4×3

从侧面看:3×4×5)

师:由于同学们观察角度的不同,所以列出的算式也不相同,现在请同学们比较一下,上面的第一和第二这2个算式有什么相同点和不同点?

生:相同点都是3、4、5三个数字相同,不同点是数字的位置不同。

师:数字位置不同运算顺序就不同,那么大家想想,如果三个数字的位置不变,你有什么办法还按照刚才同学的运算顺序进行运算吗?(不亦动3、4、5的位置,能不能先算5×4)

生:用小括号把5×4括起来。

(板书:(5×4)×3=3×(5×4))

师:请同学们计算一下这2个算式的结果。(学生计算发现结果都是60)

师:我们以往将三个数连乘都是先把前两个数相乘,再乘第三个数,而现在我们也可以把后两个数先相乘,再和第一个数相乘,它们的结果相同。这是一种巧合呢?还是一个规律呢?谁能举出类似这样的三个数连乘的例子?(找2-3个学生举例子,例子板书在黑板上)

师:同学们,你能举例了吗?现在请每个人在练习本上举一个例子,然后在小组内汇报你举的例子。(提示:如果找到比较大的数,可以借助计算器)

(学生汇报之后教师板书学生的举例,3、4个即可)

师:从刚才大家的举例来看,每一组的结果都是相同的。同学们,你能用自己的语言说说这些等式的共同点吗?

师:同学们概括的真好,这就是乘法结合律。如果用a,b,c表示三个数,你能总结出发现的规律吗?(如果同学们概括不出来,可以用字母的方法表示,并提示学生以后用字母这种表示方法表示其他的规律,更加便捷)

师:现在请同桌2人对照这字母的表达方式说一说什么是乘法结合律。

师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?

在计算搭长方体所需要的小正方体个数过程中发现了三个数连成,顺序不同,结果却相同这一问题(板书:发现问题)于是我们从中猜想是不是有什么规律(板书:提出假设)经过举例验证(板书:举例验证)我们总结出乘法的结合律(板书:概括规律)

以后,我们可以用这样的方法去发现更多的规律。

三、新知应用

(1)练习

(42×4)×5=42×(4×□)

(35×2)×5=35×(□×5)

(28×2)×5=

(47×25)×4=47×(□×□)

师:这里面出现了我们一上课提到的三对好朋友,大家发现了吗?(再次提醒学生注意5×2、25×4、125×8这三组数)

(2)课件出示:

38×25×4

49×125×8

(带领学生做第一道练习题,在黑板上板书过程,指导学生观察数字以及板书格式,体会简便的必要性。然后再让学生在练习本上做第二道习题。)

(3)让学生观察一开始板书的三组式子:3×5×4

5×4×3

3×5×4

师:观察第一组和第三组式子,有什么发现?

生:5×4和5×4位置改变了。

师:没错,那么这2个式子的结果相同吗?

生:相同

师;你能再举几个类似的例子吗(学生举例)

师:其实这也是数学中的一个重要运算定律

乘法交换律的教案 篇6

教学内容:加法交换律和乘法交换律

教学目标:

1.经历教法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。

2.通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发现应用意识。

教学重点:经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,

渗透归纳猜想的数学思想方法。

教学难点:归纳猜想的数学思想方法渗透。

教学过程:

一、导入阶段:

出示主题图,向学生介绍“爱心助学大行动”,某商店为帮助贫困山区学生特别举行义卖活动把营业额全部献给希望小学。看,小胖和小亚也来帮忙了

问:从图中你能获得哪些数学信息?

你还能提出哪些数学问题?

二、探究阶段:

1.投影演示:(果汁)师:小亚和小胖各有多少罐果汁?合起来桌上有几罐果汁?谁能列式计算?

师:谁能说出两道加法算式中各部分的名称?

提问:仔细观察一下,这两个算式有什么相同点和不同点?

(相同点是两个加数分别是8和18,和都是26,而不同处只是两个加数的位置不同)

师:因为8+18=2618+8=26所以8+18=18+8

师:有谁能模仿这道题目的形式举出类似的例子?同桌两组相互交流。

(1)根据我们举的例子你发现了什么?(小组交流)

提示:这些例子都是几个数相加?两者之间发生了什么变化?结果怎样?

归纳:两个数相加,交换加数的位置,它们的和不变。这叫做加法交换律。

(2)让学生用自己喜欢的方式表示加法交换律(启发学生用符号或字母)

例:◆+●=●+◆甲数+乙数=乙数+甲数a+b=b+a这里的a、b可以是哪些数?

加法交换律用字母表示:a+b=b+a

(3)竖式计算74+641

师:运用加法交换律,我们还可以验算加法的计算结果是否正确。

74验算:641

+641+74

715715

小结:验算时,可以将两个加数交换位置后再加一遍。也可以用原来的竖式,把每一位上的数从下往上再一遍。

2.投影演示:

(1)图中小箱里共有几罐果汁?6×3=183×6=18

师:请学生分别读一下以上两个算式,因为这两个算式计算结果相等,所以我们可以把这两个算式用等号连接。

(2)根据我们举的例子你发现了什么?(小组交流)问题:等式左边各有什么相同的地方?

每一组等式的左右两边又有什么联系?

师:这就是我们这节课所要学习乘法交换律。刚才同学们已经用自己的话归纳了一下,那么什么是乘法交换律?(出示结论)

小结:两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。

(3)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?仿这道题目的形式举出类似的例子?同桌两组相互交流。

(4)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?

板书:a×b=b×a

、总结:

今天这节课我们学习了加法交换律和乘法交换律,并且学会了用字母来表示。还学习了用这两个运算定律来验算加法和乘法。

板书设计:

加法交换律和乘法交换律

8+18=263×6=18

18+8=266×3=18

8+18=18+83×6=6×3

加法交换律:a+b=b+a乘法交换律:a×b=b×a

乘法交换律的教案 篇7

第五课时:

教学内容:乘法交换律和乘法结合律练习课

教学目标:

1.能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、基本练习

(1)口算:

50×2=100 50×20=1000

25×4=10025×8=200 25×12=300 25×40=1000

125×8=1000 125×16=200

125×24=3000125×80=10000

通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

板书:5×225×4125×8

(2)在□里填上合适的数。

30×6×7=30×(□×□)

125×8×40=(□×□)×□

(3)计算:

43×25×4 25×43×4

比较两道题,在运用乘法运算定律时有什么不同?

在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的'后面,使25与4相乘,然后再用乘法结合律,使计算简便。

小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

引导学生在对比中加以区分。

(4)师生比赛,看谁直接说出结果速度快。

25×42×4 68×125×8

4×39×25

(5)对比练习:

4×25+16×25

4×25×16×25

(25+15) ×4

(25×15)×4

46×25

(40+6)×25

49×49+49×51

49×99+49

(68+32)×5

68+32×5

学生小组分工后独立完成,再进行小组内交流。

汇报。

二、小结

学生谈收获。

乘法交换律的教案 篇8

教学内容

西师版四年级下册数学教材第17~18页例1~2,练习四第1题。

教学目标

1、经历在计算中探索发现乘法交换律、结合律的过程。

2、理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。

3、体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。

教学重难点

在具体情景中探索发现乘法交换律、乘法结合律。

教学过程

一、复习旧知

1、以前学过的加法运算律有哪些?

加法交换律和加法结合律(学生回答)

2、说一说,下面的等式用了什么运算律?

80+a=a+80()20+30+40=20+(30+40)()

3、通过预习,你知道下面的`等式用了什么运算律吗?

2×3=3×2()(2×3)×4=2×(3×4)()

引出课题:乘法运算律。

二、新课讲授

1、讲解

2×3=3×2

观察并思考:

(1)等号左边的算式和右边的算式有什么联系?

(2)从上面的观察与分析中,你能发现什么规律?

学生发现:两个因数交换位置,积不变。

师引导学生得出乘法交换律。

教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)

教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)

随堂练习:计算下面各题,用交换因数位置的方法进行验算。

34×16 26×37

学生独立做,请两名学生上台板演。

2、讲解

(2×3)×4=2×(3×4)

观察并思考:

(1)等号左边的算式和右边的算式有什么联系?

(2)从上面的观察与分析中,你能发现什么规律?

学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。

教师:谁知道这个规律叫什么?

教师板书:乘法结合律。

教师:如果用a、b、c表示3个数,可以怎样表示这个规律?

教师板书:(a×b)×c=a×(b×c)。

教师:这个规律就叫乘法结合律。

小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。

三、课堂活动

1、练习四第1题:学生独立完成,全班交流,说出依据。

2、连线。

(学生独立完成)

23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)

四、课堂小结

今天这节课你都有哪些收获?还有什么问题?

五、作业

练习四第1、2题。

乘法交换律的教案 篇9

教学内容:

教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点:

理解乘法交换律和乘法结合律。

教学难点:

能运用乘法交换律和乘法结合律进行简便计算。

教学准备:

多媒体。

教学方法:

尝试法、观察比较法。

教学过程:

一、复习导入

我们已经学过了哪些运算定律?请你用自己的`话说一说,并说一说怎样用字母表示。

二、探究新知。

1、主题图引入

(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。

(2)你能提出哪些问题?(指定多名学生说一说。)

2、学习例1。

(1)出示例1:负责挖坑、种树的一共有多少人?

(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。

(3)学生独立列式计算。教师根据学生回答,边板书:

4x25=100(人)25x4=100(人)

(4)教师引导学生观察,比较两种解法有何异同。

启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4x25=25x4)这个等式说明了什么?

(5)你能再举出几个这样的例子吗?(学生举例)

(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)

(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)

(8)让学生用自己喜欢的方式表示乘法交换律: axb=bxa。让学生说一说:这里的a、b可以是哪些数?

(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。

(10)我们学习哪些知识时用了乘法交换律?

(11)反馈练习:完成教材第35页“做一做”的第1题。

3、学习例2。

(1)出示例2:一共要浇多少桶水?

(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。

(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25x5)x2和25x(5x2)。

(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25x5)x2=25x(5x2)

(5)哪一种方法计算起来更简便?

(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。

(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?

(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

(9)用字母怎样表示?(axb)xc=ax(bxc)

(10)反馈练习:完成教材第37页的第2题。

4、乘法交换律和乘法结合律的应用。

(1)出示:怎样简便就怎样算?

5x37x2 125x4x8x25

(2)思考:怎样计算简便?

(3)学生独立完成,教师巡视指导,指定学生上台板演。

(4)集体订正,指定学生说一说各题运用了什么运算定律。

5、反馈练习:教材第35页“做一做”的第2题。

6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。

88教案网(jab88.com)小编精心推荐:

三、小结

学生小结本节课的学习内容。

教师引导学生回忆整节课的学习要点。

四、作业

《练习册》第14页第1课时的所有习题。

板书设计乘法交换律和乘法结合律

4x25=100(人)25x4=100(人)

4x25=25x4)axb=bxa

(25x5)x2 25x(5x2)

=125x2 =25x10

=250(桶)=250(桶)

(25x5)x2=25x(5x2)

(axb)xc=ax(bxc)

乘法交换律的教案 篇10

教学内容:

人教版小学数学四年级下册第24---25页例题,及做一做。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察,比较、分析、综合、和归纳、概括等思维能力;使学生在数学活动中获得成功的体验。

教学重点:

探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

教学难点:

乘法结合律的推导过程。

教学用具:

课件

教学过程:

一、创设情境,生成问题

1、猜谜引入

猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”

生:(积极举手)纽扣。

师:你为什么会想到是纽扣?

生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。我们来复习一下。

出示:(1)根据运算定律在下面的()里填上适当的数。

48+___=a+___

61+28+72=61+(___+72)

718+(282+6)=(718+___)+___

(b+132)+768=___+(_____+768)

(2)下面各题怎样计算简便就怎样计算。

78+29+22。”79+145+21

师:说说怎么计算?运用了什么运算定律?(加法交换律和加法结合律)

师:怎么用字母如何表示加法交换律、结合律呢?

板书:a+b=b+aa+b+c=a+(b+c)

3、设置疑问,引入新课。

加法运算定律有加法交换律和加法结合律,在其它运算中,是不是也存在这样的规律呢?请同学们大胆猜想一下,乘法中会有什么定律?

二、探索交流,解决问题。

活动一:探索乘法交换律

1、猜一猜:乘法可能有哪些运算定律?

生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:……

2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

4、交流。

(1)生1:我们小组经过讨论认为乘法有交换律。比如:2x3=3x2,0x8=8x0等等。两个因数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个因数的位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有5个小组,每个组有8人,求一共有多少人?可以列成算式:5x8=32,也可以用8x5=32。这就说明5乘8等于8乘5。因此,乘法和加法一样,也有交换律。

师:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如“300x

师:你能用自己的语言描述一下乘法交换律吗?

生:两个数相乘,交换因数的位置,积不变。

师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

师:会用字母表示吗?板书:axb=bxa。

5、师:学习乘法交换律有什么作用?

生:乘法交换律的作用有很多,第一:它可以用来验算乘法。第二、它还可以比较两个式子的大小。第三、还可以让有些算式变得简单易算。

活动二:探索乘法结合律。

师:乘法是否还有其他运算定律呢,我们一起接下去研究看看。同学们,窗外树木新发的嫩芽正提醒着我们,现在已经是春季,细雨滋润大地,万物复苏,正是植树造林的`好时机。最近我们学校也组织同学们参加植树活动,很多同学们都积极地响应学校的号召。

1、出示例题2:

同桌讨论,你们是怎样计算的?

生1:先算出一共种了多少棵。

(25x5)x2=125x2=250(人)

生2:先算每组要浇多少桶水。

25x(5x2)=25x10=250(人)

2、全班交流

(1)师:我们来观察两位同学的做法,你有什么发现?

比较等号两边的算式,有什么相同点和不同点?

生1:结果相等。

生2:第二个算式中有括号,第一个算式中没有。

(2)猜想:是不是具备这种形式的两个算式结果都相等?这会不会是乘法中的一个规律?

生1:是。

生2:可能是。

……

师:同学们猜测的对不对呢?我们需要进行—验证。怎样验证呢?(让学生先思索一会儿)

生:随便说两个算式,一个不带括号,一个带括号,算出结果,看是否相等。

师:同学们觉得呢?---可以。

师:通过一组算式就能验证吗?

生:不能,要多举几个例子。

师:说得真好。下面就来验证一下。

(3)学生举

比较这几组等式,你发现了什么规律,把你的发现与同桌交流。

师:能用自己的语言描述一下你发现的规律吗?

结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(师:这就是乘法结合律)

师:你说得很准确,有什么好方法帮助记住这乘法结合律吗?

(4)师:怎样用字母表示乘法结合律?

板书:(axb)xc=ax(bxc)

(5)师:有什么好方法帮助记忆?

生:我发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示“先把前两个数相乘”,第三个手指靠过来表示“再和第三个数相乘”,它等于“先把后两个手指靠在一起,再把第一个手指靠过来”。

师:这个记忆方法确实很好,我们大家一起来试一试。三、巩固应用,内化提高。

师:刚才我们已经验证了在乘法中确实存在交换律和结合律,接下来老师要考考大家能否正确运用乘法运算定律解决问题。

1、学生在空格里填上适当的数使等式成立,然后同桌说说运用了什么乘法运算定律。

15x16=16x()

(60x25)x=60x(x8)

125x(8x)=(125x)x14

3x4x8x5=(3x4)x(x)

25x7x4=x( x4)

同学们互相讲填写的依据,以检查学生是否理解了乘法交换律和结合律。订正时重点分析最后一小题,乘法结合律并非为了用而用,更要考虑使计算简便。

2、计算23x15x25x37x2

放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

通过实际操作计算,进一步利用乘法运算定律进行简便计算,从理解上升到运用。

师:运用了乘法的运算律,计算时你有什么体会?

3、思考题:用简便方法计算。

36x25125x32

例。6=6x300

学生的方法很多:36x25=25x4x9=5x6x5x6=

四、回顾整理,反思提升

通过这节课的学习,你有什么收获想和大家分享一下呢?

乘法交换律的教案 篇11

教学内容:教科书第59页的例1和第59、60页的乘法交换律,完成“做一做”中的题目和练习十三的第1—5题。

教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点:乘法的意义和乘法交换律

教学难点:用乘法交换律验算乘法

教具准备:把下面复习中的题目写在小黑板上,把例1的插图放大成挂图。

教学过程:

一、复习

教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。

教师出示复习题。

1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多人?

2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3.小荣家养鸭45只,养的鸡是鸭的3倍,小荣家养鸡多少只?

4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

先让学生默读题目,然后教师提问:

“上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。

教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。

二、新课

1.教学例1。

出示例1的插图,再提问:

“要求盘里的一共有多少个鸡蛋可以怎样求?”

“还可以怎样求?”

学生回答后教师板书:

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

“乘法算式 5乘以6表示什么?”(6个5相加)

“乘法算式中的被乘数5是加法算式中的'什么数?”(相同的加数。)

“乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数)

“解答这道题用加法计算简便,还是用乘法计算简便?”

“求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”

“你能说出乘法是什么样的运算吗?”

教题肯定学生的回答,再强调说明并板书:求几个相同加数的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。

“乘法算式中乘号前面的数叫什么数?表示什么?”

“乘法算式中乘号后面的数叫什么数?表示什么?”

“被乘数和乘数又叫什么数?”

教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。

2.教学乘数是1和0的乘法。

(1)教学一个数和1相乘。

教师在黑板上写出三个算式:1×3、3×1、1×1。

“1乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书1×3=3,表示3个1相加的和是3。

“3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说,最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×1=3。

“1乘以1等于什么?能不能说这个算式表示1个1相加?”先让学生说一说,然后教师再说明:1个1 不能相加,1乘以1就表示1个1还是1,算式是1×1=1。

“这三个乘法算式都和哪个数有关系?”(都和1有关系)

下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:

6×1= 1×8= 1×10= 123×1=

“谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说。

教师边说边板书:一个数和1相乘,仍得原数。

(2)教学一个数和0相乘。

教师在黑板上写出三个算式0×3 = 3×0 = 0×0=

“0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3 = 0表示3个0相加的和是0。

“3乘以0等于什么?能不能说这个算式表示0个3相加?”先让学生回答,教师再说明:0个3不能表示0个3相加,3乘以0就表示0个3还是0。板书:3×0=0

“0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。

“这三个算式都和哪个数有关系?”(都和0有关系)

“一个数和0相乘它们的积有什么特点?”

教师边说边板书,一个数和0相乘,仍得0。

3.教学乘法交换律。

让学生再看例2的插图,然后教师提问:

“要求一共有多少鸡蛋,用乘法计算还可以怎样列式?”学生回答后,教师板书:6×5=30(个)

“比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。

教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。

“12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。

“400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。

“100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。

“通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”

学生发言后,教师边说边板书:两个数相乘,并换因数的位置,它们的积不变,这叫做乘法交换律。

“谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a

“大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是用了乘法交换律。

三、巩固练习

1.做第60页“做一做”中题目。先让学生独立做,然后再集体核对。

2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。

四、作业

练习十三的第1、2、5题。

乘法交换律的教案 篇12

一、教学内容:

北师大版四年级上册数学第二单元p45-p46

二、教学目标:

1、经历探索过程,发现乘法结合律和交换律,并用字母表示。

2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。

3、感受数学探索的乐趣,培养自主探索问题的能力。

三、教学重、难点

1、重点:探索、发现、理解和应用乘法结合律和交换律。

2、难点:乘法结合律和交换律的探索过程。

四、教学过程

(一)口算比赛,激发学习兴趣

1、出示口算题

5×225×425×8125×8

2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。

3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?

(二)创设情境,发现问题

1、多媒体出示情境图

2、估一估

师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?

3、算一算

师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。

4、交流算法。

师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。

师板书:(3×5)×4=60(个)

3×(5×4)=60(个)

(三)比较算式的特点,发现规律

1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?

2、学生汇报:略

3、小结:(3×50)×4=3×(5×4)

(四)提出假设,举例验证

1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。

2、学生举例

同桌之间互相交流?

3、集体交流

谁愿意介绍一下你们小组举例的情况?

(五)概括规律

1、从刚才大家所举的例子看,每一组的'结果都是相同的。这样的例子多不多?能举的完吗?

2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?

板书(a×b)×c=a×(b×c)

板题:乘法结合律

(六)运用规律,解决问题

1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?

2、看来运用乘法结合律可以使一些计算简便。

3、练习:p46“试一试”的题目

学生独立完成,集体订正。

(七)探索乘法交换律

1、出示两组数据

4×5=5×412×10=10×12

2、师:认真观察,看看你有什么新发现?

3、学生汇报。

4、学生举例验证。

师:你能举出像这样的例子吗?

5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?

6、板书:a×b=b×a

板题:乘法交换律

三、巩固练习

1、(完成课本第46页练一练第1题)

学生口答,集体订正。

2、应用乘法结合律和交换律,快速计算下面各题。

25×17×413×8×128(25×125)×(8×4)

(1)学生独立完成,个别板演。

(2)订正时让学生说说运用什么运算定律。

四、总结:这节课你有什么收获?

五、学生读课本第45、46页,质疑。

六、作业:课本第46页第2题。

推荐阅读:
乘法交换律的教案 乘法交换律教案八篇 乘法的交换律和结合律 乘法交换律的教案范例9篇
更多精彩乘法交换律的教案内容,请访问我们为您准备的专题:乘法交换律的教案
热门标签: 加法交换律结合律教学反思 四年级交换律教案 四年级交换律 四年级加法交换律教案 四年级数学加法交换律教案 乘法分配律教案

文章来源:http://www.jab88.com/j/215746.html

更多

猜你喜欢

更多

最新更新

更多