88教案网

小学六年级数学圆锥和圆锥的体积的教案

为了使每堂课能够顺利的进展,老师需要做好课前准备,编写一份教案。才能有计划、有步骤、有质量的完成教学任务,你们知道那些比较有创意的教学方案吗?下面是由小编为大家整理的小学六年级数学圆锥和圆锥的体积的教案,仅供参考,希望能为您提供参考!

圆锥和圆锥的体积

教学内容:教材第16~19页圆锥的认识和体积计算、例1。

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:掌握圆锥的特征。

教学难点:理解和掌握圆锥体积的计算公式。

教学过程:

一、铺垫孕伏:

1.说出圆柱的体积计算公式。

2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

二、自主探究:

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

4.学生练习。

口答练习三第1题。

5.教学圆锥高的测量方法。(见课本第17页有关内容)

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积×

=底面积×高×

用字母表示:V=Sh

(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

8.教学例l

(1)出示例1

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、巩固练习

1.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

2.做练习三第4题。学生书面练习,小组交流,集体订正。

四、课堂小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

五、课堂作业

练习三第3题及数训。

六、板书:

圆锥

圆锥的特征:底面是圆,

侧面是一个曲面,展开是一个扇形。

它有一个顶点和一条高。

圆柱的体积=底面积×高

圆锥的体积=×圆柱体积

圆锥的体积=×底面积×高V=Sh

扩展阅读

人教版六年级下册《圆锥的体积》数学教案


人教版六年级下册《圆锥的体积》数学教案

教学内容:

教科书第20~21页例5及相应的 “试一试”,“练一练”和练习四的第1~3题。

教学目标:

1.组织学生参与实验,从而推导出圆锥体积的计算公式。

2.会运用圆锥的体积计算公式计算圆锥的体积。

3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。

4.以小组形式参与学习过程,培养学生的合作意识。

5.渗透转化的数学思想。

教学重点:

理解和掌握圆锥体积的计算公式。

教学难点:

理解圆柱和圆锥等底等高时体积间的倍数关系。

教学资源:

等底等高的圆柱和圆锥容器一套,一些沙或米等。

教学过程:

一、联系旧知,设疑激趣,导入新课。

1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)

2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)

3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)

4.大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?

5.它们的体积之间到底有什么关系呢?

二、实验操作、推导圆锥体积计算公式。

1.课件出示例5。

(1)通过演示使学生知道什么叫等底等高。

(2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

(3)实验操作,发现规律。

(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

2.教师课件演示

3.学生讨论实验情况,汇报实验结果。

4.启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积× 1/3=底面积×高×1/3

用字母表示:V= 1/3Sh

小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?

5.教学试一试

(1)出示题目

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、发散练习、巩固推展

1.做“练一练”第1.2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。

2.做练习四第1.2题。

学生做在课本上。之后学生反馈。错的要求说明理由。

四、小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

学生交流

五、作业

练习四第3题。

北师大版六年级数学下册《圆锥的体积》教案


一、学习内容:

教师提供 小学数学六年级下册14页----17页。

二、学生提供:

等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。

三、学习目标:

1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

四、重点难点:

重点:圆锥的体积计算。

难点圆锥的体积公式推导。

关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。

五、学习准备:

等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?

长方形的长等于三角形的底,长方形的宽等于三角形的高。

你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?

三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

六、布置课前预习

点拨自学

1、圆柱和圆锥有哪些相同的地方?

2、圆柱和圆锥有哪些不同的地方?

3、圆锥的体积和圆柱的体积有什么关系呢?

请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。

七、交流解惑:

它们的底面积相等,高也相等

圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……

动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。

通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流

组际解疑

老师点拨

八、合作考试

1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)

2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底

面半径约3分米,高约2.7分米,求沙堆的体积。

(只列式不计算)

3、在打谷场上,有一个近似于圆锥的小麦堆,测

底面直径是4米,高是1.2米。每立方米小麦约

重735千克,这堆小麦大约有多少千克?

(只列式不计算)

4、如图,求这枝大笔的体积。

(单位:厘米)

(只列式不计算)

5、将一个底面半径是2分米,高是4分米的圆柱

形木块,削成一个最大的圆锥,那么削去的体积

是多少立方分米?(口算)

九、自我总结:

通过今天的学习,我学会了 ,以后我会 在 方面更加努力的。

十、教学反思:

本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

苏教版六年级下册《圆锥的体积》数学教案


苏教版六年级下册《圆锥的体积》数学教案

教学目标:

1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程

3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

教学重点:

了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

教学难点:

理解圆锥的高和圆锥体积公式中“Sh”表示的实际意义。

教具学具:

1、等底等高的圆柱和圆锥型容器,一些沙子。

2、多媒体课件。

教学流程:

一、炫我两分钟

主持学生指名叫学生回答下列问题

1.圆柱有几个面?各有什么特点?

2.怎样计算圆柱的体积?

学生回答问题。

【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的相关知识,在轻松愉快的氛围中自然引入本节所学知识。】

二、创设情境

1.教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

2.出示问题情境

最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)

【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】

三、探究新知

尝试小研究一(课前):了解圆锥的特点

1.观察圆锥形的物体或图片,它们有哪些特点?

我的发现

2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的侧面是一个( ) 。

3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。

4.怎样计算圆锥的体积?

我的猜想:( )

尝试小研究二(课上):推导圆锥体积的计算公式

1、引导学生借助圆柱,探讨圆锥的体积公式。

①猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?

②是怎样推导的呢?你有什么想法?

下面我们就用实验的方法来推导圆椎的体积公式。

老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)都有吗?

2、用实验的方法,推导圆锥的体积公式。

①引导学生观察用来实验的圆锥、圆柱的特点。

其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?(学生发现等底等高)(师板书等底等高)

②学生实验

你想怎么实验?(小组可以议一议)(老师指导:倒一下)

请大家以小组为单位进行实验,在实验中,注意作好记录,思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)

A:你们小组是怎样进行实验的?

B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?

C:根据这个关系怎样求出圆锥的体积?

(教师指导:为了让实验更准确些,可以用尺子将沙子刮平再倒入)

③、学生交流汇报,完成计算公式的推导

小组汇报,师板书。

圆锥的体积等于和它等底等高的圆柱体积的三分之一。

V=1/3Sh

【设计意图:通过小组合作,观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程,知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。】

四、解决问题,巩固练习

(一)运用这个公式解决老师提出的问题,帮助老师解决问题。

1、 学生试做。

2、对子同学交流。

3、小组交流。

4、展示汇报。

(二)判断: 用手势来回答

1、圆柱的体积是圆锥体积的3倍。( )

2、一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )

3、把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。( )

(三)完成教材第42页“试一试”。

【设计意图:通过练习,加深对本节课知识的了解,使学生更好的掌握本节课所学知识,并提高学生应用所学知识解决实际问题的能力。】

五、盘点收获

通过这节课的学习,你有什么收获?你还想了解哪些知识

【设计意图:引导学生进行小结,培养学生的探究欲望,有利于知识的积累和自主学习能力的提高。】

六、拓展延伸

教材“练一练”。

【设计意图: 把课上的知识延伸到课外,使学生进一步感受数学来源于生活并应用于生活。】

板书设计:

圆锥和圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的三分之一。

圆锥的体积=底面积×高×1/3

V=1/3Sh

北京版六年级下册《圆锥的认识和体积》数学教案


北京版六年级下册《圆锥的认识和体积》数学教案

教学目标:

1、认识圆锥,理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

2、通过同学们自主探究,理解圆锥体积公式的推导过程,培养同学们初步的空间观念和动手操作能力。

3、采取小组合作、质疑问难、讨论交流的学习方式,培养同学们观察、猜测、分析、比较、综合的学习思考方法。

教学重点:

掌握圆锥体积的计算方法。

教学难点:

理解圆锥体积公式的推导过程。

教学流程 :

一、创设情境

让问题来源于生活 为了创设生活化的、富有探索性的问题情境,我先让学生看电脑显示,(在海边堆沙堆的画面),通过观察发现了什么,学生发现沙堆都是近似圆锥形的,接着让学生根据情境提出他们想知道的知识,有的的同学想知道圆锥的特点,还有的多学生都想知道沙堆的体积有多大,从而确定本节课的研究课题“圆锥的认识和体积”。这样一来教学问题自然地呈现在学生面前,学习现场从生活实际巧妙地引进课堂。这一环节的处理,使问题来源于孩子们,来源于生活,极大的调动了学生的探究热情。

二、自主探究

让学生体验创造的快乐 在这一环节中,我首先让学生联系生活,找出生活中哪些物体的形体是圆锥体的?通过让学生看生活中的圆锥体的图片,调动学生积极思维,加深学生对圆锥的认识,从而使学生理解数学来源于生活,生活中处处有数学。然后让学生根据生活经验制作圆锥体,在教学中为学生提供纸做的扇子、铅笔、转笔刀、直角三角形等材料,让学生在制作的的过程中,小组讨论交流的基础上,认识了圆锥,从而概括出圆锥的特征。同时用课件演示圆锥的各部分名称,并通过指一指实物圆锥的高,从而明确从圆锥的顶点到底面圆心的距离才是高。同时置疑,从实物中我们无法看出圆锥的高,那么我们怎么知道它的高呢?我将先让学生自己去研究测量方法,并根据汇报出示课件,然后再实际测量自己制作好的圆锥的高。在这一过程中,我充当了一名引导者,提示着研究方向,我与学生相互分享彼此的思考、见解和作品。学生在广阔的空间里,体验着成功的喜悦。

三、提供时空,让学生品位研究的乐趣

在这个环节中,我分四步进行:

第一步:联想猜测 让学生猜测、设想求圆锥体积的方法,学生独立思考后交流讨论,可能会有以下设想:

1、以长方形直角边为轴旋转一周得到圆柱体,以三角形直角边为轴旋转一周而得到圆锥体,由三角形面积是长方形面积的一半而联想到圆锥体积是圆柱体积的一半。

2、学生也可能认为两个同样大小的圆锥把一个倒过来拼不成一个圆柱,圆锥体积不是圆柱体积的二分之一等等各种设想。这里老师给学生提供了联想和交流的空间,培养了他们的创新能力。

第二步:探索质疑 学生根据自己的设想,得到圆锥与圆柱体积之间存在某种关系:圆锥体积=底面积 ×高 ×倍数。 接着教师用电脑出示一个和圆锥不等底等高的圆柱,并提问:“你们所说的圆柱是这样的圆柱吗?”结合学生的回答再显示出与圆锥等底等高的圆柱。这样的设计,解决了部分有困难的学生心中的疑问。

第三步:分组验证 学生动手实验,小组合作探究圆锥体积的计算方法,学生可能会有多种方案:

1、从三角形面积公式的推导过程中受到启发,用几个同样大小的橡皮泥做的圆锥体,捏成一个和它等底等高的圆柱体,从而推导出圆锥体积的计算公式。

2、有的学生利用自然课中学过的知识:物体排出水的体积就是物体的体积,发现实体圆锥三次排出的水正好装满空圆柱。

3、还有的学生利用传统的装沙或装水的方法进行实验等等。 这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。

第四步:形成共识 通过学生演示、交流、讨论、教师演示(课件),得出圆锥体积的计算公式:圆锥体积=底面积 ×高 × 这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。

四、回归生活,让探究变得富有魅力

1、以练习的形式出示例1。 例1:一个圆锥体冰淇淋的底面直径是6厘米,高是15厘米。据统计,每毫升冰淇淋约可以产生5.02焦耳的热量。这个圆锥体冰淇淋大约可以产生多少焦耳热量?(得数保留整数)

2、口答

3、变式练习:求下面各圆锥的体积。

(1)底面半径是4厘米,高是21厘米。

(2)底面直径是6分米,高是6分米。 这道题是培养学生联系旧知灵活计算的能力,形成系统的知识结构。

4、操作练习。

让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,或是利用学生从生活中找的一个圆锥形物体,想办法计算出它的体积。这道题就地取材,通过这道练习,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。培养学生解决实际问题的能力,了解数学与生活的紧密联系。 知识对学生来说,是自己对生活的现象的解读。书本知识是生活的一种提取、概括和应用,它给学生学习提供了一种视角,搭起一座平台。生活的边界就是教育的边界。我以一种开放的、立体的教育视野和课程理念,引领学生走进生活,创造性地把生活和知识关联起来,原本枯燥的探究也变得充满灵性。

北师大版六年级下册《圆锥的体积》数学教案


北师大版六年级下册《圆锥的体积》数学教案

教学目标

1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

3.培养学生个人的自主学习能力和小组合作学习的能力。

教学重难点

掌握圆锥体体积公式的推导。

教学过程

(一)复习导入:

1.怎样计算圆柱的体积?

(板书:圆柱体的体积=底面积×高)

2.

(1)一个圆柱的底面积是60平方分米,高 15分米,它的体积是多少立方分米?

(2)一个圆柱的底面直径是6分米,高10分米,它的体积是多少立方分米?

3.(出示圆锥体)

问:圆锥有什么特征?

师:怎样计算圆锥的体积呢?

(二)探索尝试,解释交流。

1.师:在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的?

学生回答,教师板书:

圆柱---(转化)---长方体

师:借鉴这种方法,为我们 研究圆锥体体积提供了方便,每个组都准备了一个圆柱体和一个圆锥体。你们比比看,它们有什么相同的地方?

2.问:你发现到什么?

师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底 等高 )

师:既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行? (师把圆锥体套在透明的圆柱体里。)

师:是啊,圆锥体的体积小,你估计一下这两个的体积有什么样关系?

师:用沙子、圆柱体、圆锥 体做实验。

3.谁来汇报你们组是怎样做实验的?

师:你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(板书)

师:同学们得出这个结论非常重要,其他组也是这样的吗?

师:通过刚才同学们的动手我们发现等底等高的圆柱和圆 锥有这样一个倍数关系。我们再来一起回一下实验过程。

大家一起把实验报告表填一下。

我们学过用字母表示数,如果用v表示体积,用s表示底面积,用h表示高。谁来把这个公式整理一下?(板书:)

4.出示另外一组 大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

师:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(举例)

(三)课堂练习

1.求下面 圆锥的体积。

(1)底面半径是2厘米,高3厘米。

(2)底面直径是6分米,高6分米。

2.用数学

(1)如果小麦堆的底面半径为2m,高为1.5m。小麦堆的体积是多 少立方米?

(2)一个圆锥形零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

(3)一个近似圆锥形的 煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

(四)课堂小结

通过本节课的学习,你有哪些收获?

点击查看更多:小学数学教案

提醒:

最新小升初政策、最新奥数试题、最全小学语文知识点

尽在“”微信公众号

西师大版六年级下册《圆锥的体积》数学教案


西师大版六年级下册《圆锥的体积》数学教案

一、 教学内容

九年义务教育六年制小学教科书《数学》(第一版)六年级第十二册第二单元。

二、 教材分析

1、内容分析:这是本单元实验探究性较强的知识点,通过学生合作探究,理解并掌握圆锥体积的计算方法,且能加以运用。

2、教学重点:正确运用公式计算圆锥的体积,学会解决与计算圆锥形物体有关的实际问题。

3、教学难点:理解圆锥体积公式的推导。

三、 教学目标

1、知识教学点:让学生通过观察、亲自动手做对比实验、分析、验证等活动,初步感知圆锥的体积计算公式的由来,能理解并加以运用。

2、能力训练点:培养学生的观察、比较、分析、综合、概括以及初步的自主探究的能力。

3、思想渗透点:激发学生积极探索新知和学习数学的欲望。

四、 教、学具准备

1、教具:量筒(2只)、圆柱和圆锥(等底等高,可装水)、红颜色的水、不规则的石块。

2、学具:教师指导用硬塑料纸做3组可盛水的圆柱和圆锥(①等底等高 ②等底不等高 ③等高不等底)、适量的水。

五、 教学过程

(一) 创设探究情景,激趣引思

1、教师行为

(1) 谈话:同学们探究了计算圆柱体积的方法。想不想探究圆锥体积的计算方法呢?今天我们用准备好的学具试一试!

(2) 演示实验:先出示实验器材,让学生细心观察比较;在空圆柱里装满红颜色的水,然后倒入一只量筒里;在空圆锥里装满红颜色的水,倒入另一只量筒里,像这样倒三次。

(3) 质疑: 通过老师做实验,同学们看到了什么?想到了什么?发现了什么?有什么感想?

2、学生活动

(1) 听谈话,明确主题。

(2) 细致入微地观察演示实验。

(3) 四人小组合作讨论交流,看到的、想到的。并分组汇报讨论结果。(两只一样的量筒里水面高度一样,用空圆锥倒了三次水,空圆柱倒了一次,它们的底面大小及高度一样,两只量筒里水的体积相等、空圆锥装三次的水与空圆柱装一次的水一样多等)。

(4) 亲自用教师演示用具验证讨论结果。

(设计意图:通过演示实验激发学生的探究兴趣,激活学生思维。)

(二) 提出探究假想,实践验证

1、教师行为

(!)启迪:老师做的实验对我们今天的探究活动有什么启发?请同学们提出自己的设想,并给予各组学生必要的指导,进行小组讨论。

(2)综述讨论结果,提问:所有圆柱的体积都等于圆锥体积的3倍,圆锥体积都等于圆柱体积的1/3,是否正确,为什么?有什么条件限制?再让学生观察老师用的实验器具思考。

(3)促思:同学们设想的条件哪一种正确?大家没有量筒,用你们准备的

学具怎样才能验证假设?

(4)合作探究:创新验证方案,怎样让它具有可操作性,教师适当点拨。

(5)组织学生用确定的方案进行合作探究,实践验证。

(6)诱导:修正假设,反思结果,得出结论,层层深入。

2、学生活动

(1)小组讨论,积极交流,达成共识。

(2)分组汇报讨论结果:对今天的学习有帮助,假设空圆柱和空圆锥里装水的体积近似等于它们的体积;则老师所用的空圆柱的体积将等于空圆锥体积的3倍,空圆锥的体积就等于空圆柱体积的1/3。

(3)根据问题设想条件:圆柱和圆锥、等底等高、等底不等高、等高不等底。

(4)交流确定验证方案:分别用三组准备好的空圆锥装满水倒入空圆柱里,看哪一组装3次刚好装满。

(5)分组实验。

(6)汇报探究情况:等底等高的一组空圆柱和空圆锥才符合原先假设。

(7)小结:圆柱的体积等于和它等底等高的圆锥体积的3倍;圆锥体积等于和它等底等高的圆柱体积的1/3.即

V柱=1/3 V锥=1/3 sh=1/3 ∏r2h

(设计意图:培养学生的分析能力和自主探究学习的能力。)

(三)巩固探究成果,深化理解

1、教师行为

(1) 巩固新知:让学生计算课本例1、例2、做一做,然后集体订正。

(2) 强调:计算圆锥体积时,最容易出现的错误是什么?

(3) 引申练习:一个圆锥形零件,已知下列条件,分别求其体积

①底面半径3厘米,高15厘米;

②底面直径5厘米,高10厘米;

③底面周长12.56厘米,高10厘米;

④底面半径3厘米,比高少70%。

2、学生活动

(1)自主训练,多思多问。

(2)总结:计算时,不能忘记特殊数字“1/3”

(3)灵活运用公式,找出自己知识的不足。

(设计意图:运用探究成果进行强化练习,加深对知识的理解,培养学生综合运用能力。)

(四) 拓展探究思维,迈向生活

1、教师行为

质疑:

(1)出示一个不规则滑石块,怎样求其体积?(教师作指导)

(2)学校食堂买来一车煤炭,倒堆成圆锥体,量得其底面周长和高分别为12.56米,每立方米煤200元,结果付了1300元,问学校有没有多花钱?

2、学生活动

(1)分组讨论,引导得出求其体积的方法:把不规则的物体(不吸水)放进盛水的容器里,求出上升那部分水的体积也就等于不规则物体的体积。

(2)合作探讨明确计算方法。

(设计意图:解决生活中的实际问题,体现“人人学有价值的数学,不同的人在数学上得到不同的发展”的新课程理念,培养学生的创新意识和实践能力。)

教学反思:

立足教材,根据本地区挖掘学生较熟悉的、乐于接受的、具有多方面教育价值,能引起学生思考的素材,真正实现用教材,并加以创新,让探究成功率提高,激起了学生的学习兴趣。在课堂教学中充分发挥学生的主体性,构建了“激趣引思——实践验证——深化理解——迈向生活”的教学模式,促进了学生学习方式的转变。]

教学评析:

教师充分利用教学用具,开发数学课程资源,让学生在探究新知的过程中,进一步发展空间观念和应用数学的能力,实现了让学生在生活中学数学、用数学的愿望。

在教学过程中与学生积极互动,共同发展,处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性,引导学生观察、质疑、探究,在实践中学习,促进学生在教师指导下主动地、富有个性的学习,以学生为本,以问题为中心,以实验探索为主要手段,以讨论为交流方式,以陈述观点及根据为要求,把学生推到了探究性学习的前台,让学生去想、去说、去做、去表达,去自我评价、去体会科学知识的真谛,促进学生全面发展。

圆锥的体积


作为一小学位老师,我们要让同学们听得懂我们所讲的内容。所以大多数老师都会选择制定一份教学计划。这样可以让同学们很容易的听懂所讲的内容,那你有没有为了一个问题而去做过一份教案呢?以下是小编收集整理的“圆锥的体积”,仅供您在工作和学习中参考。

实践出真知,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。

以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。

怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历提出猜测--设计实验--动手操作--得出公式的自主探究学习的过程,我让学生拿出自己的学具等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。

推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出等底、等高这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

苏教版六年级下册《圆柱和圆锥的认识》数学教案


苏教版六年级下册《圆柱和圆锥的认识》数学教案

教学内容:

苏教版小学数学六年级下册第二单元信息窗一《圆柱和圆锥的认识》(P15-P18)

教材分析:

《圆柱和圆锥的认识》一课是在学生掌握了长方体和正方体以及圆的相关知识基础上进行教学的,是小学阶段几何知识的最后一部分内容的起始课,是以后进一步学习几何知识的基础。本节课的学习会使学生对立体图形的认识更深入、更全面,有利于进一步发展学生的空间观念。

教学目标:

1、在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握他们的特征。

2、经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证,交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

教学重点、难点:

重点:圆柱圆锥的特征。

难点:认识圆柱和圆锥的高。

教具、学具准备:多媒体课件、剪刀,圆柱、圆锥实物等。

教学过程:

一、创设情境,提供素材。

1、观察情境图中的物体,形成直观表象。

(1)谈话:同学们,喜欢吃冰淇淋吗?你注意过装冰淇淋的盒子吗?(师手指大屏幕)老师带来一些形形色色的冰淇淋盒子,仔细观察,你想怎样给他们分类? 你是按什么标准分的?

预设一:我是按圆柱和圆锥分的;

预设二:我是按形状分的。

(2)大屏幕出示分好类的两组盒子。师介绍:一组是圆柱,在一年级已经认识了,一组是新认识的图形圆锥。(板书:圆锥)

2、寻找生活中的圆柱和圆锥,积累感性认识。

让学生说说生活中还见过哪些圆柱、圆锥形状的的物体。

学生可能会想到未削的铅笔、水杯、胶棒,广场上的圆柱子、压路机的滚子等是圆柱。铅笔尖部、塑料跳棋下部、沙堆、陀螺等是圆锥。

3、由实物抽象出几何图形,发展空间观念。

让学生想想圆柱和圆锥的空间图形的样子,一起画下来。课件演示画出的圆柱和圆锥的几何图形。

4、提出问题,培养问题意识。

谈话:对于圆柱和圆锥,你想知道什么?

预设一:怎样求圆柱和圆锥的体积?

预设二:怎样求圆柱的表面积?

预设三:圆柱和圆锥的特征是什么?……

5、揭示课题。

谈话:通常我们先研究圆柱和圆锥的特征,然后再研究它们的表面积、体积等。随机板书课题:《圆柱和圆锥的认识》。

设计意图:兴趣是学习成功的动力,通过实物图形,引起学生的学习兴趣,让学生感知生活中处处有圆柱、圆锥。通过分类、举例,使学生对圆柱、圆锥整体上认识,形成初步的表象,在此基础上抽象出几何图形,由物到形,由生活走向数学,引导学生对照模型想图形,在头脑中形成圆柱和圆锥的表象,帮助学生形成空间观念。让学生提问题,激发学生的探究欲望,进一步培养学生的问题意识。

二、分析素材,理解概念。

1、观察圆柱,发现特征。

让学生用以前研究空间图形特征的方法,想办法研究圆柱的特征。先自己动脑想一想、做一做,然后跟小组同学说一说。

2、学生动手操作,教师巡视。

3、全班交流,探究特征。

引导学生从以下方面探究圆柱的特征。

(1)交流圆柱的底面。

预设一:我发现圆柱有两个圆形的面。

师问是怎么知道的。

预设二:这两个面是平的。

教师让学生都摸一摸感知一下。

教师介绍:圆柱的两个圆面叫底面。课件展示。

预设三:上下两个面大小相等。

追问:你是怎么知道的?

学生可能说:用眼睛看的。

让学生明确:眼睛看到的只是估计的,需验证。放手让学生自己想办法验证两个底面是否相等。

交流时,预设:

预设(一):量一量。量圆柱的半径或直径或周长是否相等;

预设(二):滚一滚。如果直行不打弯,说明两个圆一样大;

预设(三):比一比。画下一个底面,把另一底面卡上看看是否重合。

……

教师用个课件演示两个圆重合。

(2)交流圆柱的侧面。

学生可能说圆柱还有一个面。教师随即介绍:圆柱的曲面叫侧面。课件展示。然后让学生指一指哪是侧面。再摸一摸底面,然后摸一摸侧面说说有什么不同的感受。(教师手势表示摸面的样子,上下摸面的样子,体会侧面是曲的,而且上下一样粗)

4、研究圆柱的高。

(1)揭示高的含义。两底面之间的距离叫做高。(教师手势比划)

(2)指高。多让学生指出圆柱的高。这样的高看是否能找完,在此基础上让学生想象高的条数。

学生可能只指了侧面上的一条高,师引导发现:如果把这个教室比作一个大圆柱,在上下两个底面之间做高,能做多少条。它们都有什么特点。

(3)小结:同学们真厉害,找出圆柱的高。老师这也有一个圆柱(展示圆柱的高有无数条)。

(4)拓展高的认识。生活中,有些圆柱的高还有别的名:硬币的高叫厚;圆柱形井的高叫深;铅笔的高叫长;钢管的高叫长。

5、总结圆柱的特征:刚才我们研究圆柱时,由表及里,运用先看,再比一比、量一量、摸一摸等方法,知道圆柱的特征。

让学生完整地说一说圆柱的特征。

6、研究圆锥的特征。

根据研究圆柱特征的方法,让学生从上面几个方面研究圆锥的特征。

(1)学生动手操作,教师巡视。

(2)学生汇报交流。师板书。

学生可能按圆柱特征的指向说出圆锥有1个圆形的底面;1个曲面;1条高。

认识高。

让学生说说什么是圆锥的高?接着介绍:顶点到底面圆心的距离叫圆锥的高。

让学生指出圆锥的一条高,看是否还能再指出一条。明确圆锥的高有多少条。

7、让学生完整的说一说圆锥的特征。

设计意图:放手让学生自主探究圆柱的特征,通过课件演示,学生看一看、摸一摸、比一比、量一量、议一议等活动,让学生亲身经历知识的形成过程,进一步整体感知圆柱,加深对圆柱的认识,培养学生的空间观念,建立对圆柱的表象的认识;通过举例认识高,将抽象的数学知识形象化,便于理解;通过小组合作,交流认识、动手操作,培养了学生的合作能力。

前面有了对圆柱的特点的学习,圆锥的学习全部放手,让学生不仅受获“渔”,而且要学会运用“渔”进行“捕鱼”,同时,体验获取成功的喜悦,提高学生的学习能力。

三、借助素材,总结概念。

1、比较异同。

让学生对比观察,圆柱和圆锥有什么相同和不同?

预设一:相同处。它们的底面都是圆形;侧面都是曲的;都有高。

预设二:不同处。圆柱有2个底面,圆锥有1个底面;圆柱有无数条高,圆锥只有一条高。

2、想象拓展,建立联系。

让学生想象一下:如果从圆柱的底面开始,把上底面缩小,再缩小,再缩小(手势表示)最后会变成一个什么图形?

小结:从这看出,圆柱和圆锥也有着密切的联系。

设计意图:通过比较圆柱和圆锥的异同,使学生深化认识圆柱和圆锥的特点。让学生想象,培养学生的空间想象力,加强了圆柱和圆锥的联系,为后面学习圆柱和圆锥的体积关系作铺垫。

四、巩固拓展,应用概念。

1、下面物体的形状,哪些是圆柱?哪些是圆锥?

(1)先指出图形让学生说是什么图形,个别的说说原因。

(2)上边一行左数第四个、下边一行左数第二个,让学生说说为什么既不是圆柱又不是圆锥,进一步明确圆柱和圆锥的特征。

2、圆柱的侧面展开图:让学生沿着侧面上的一条高剪开(教师指圆柱上的一条高),猜想一下展开后会是什么图形,再让学生动手剪一下看看是什么图形。

预设一:得到的是一个长方形

预设二:得到一个正方形。

引:展开后的这个图形与原来的圆柱有什么关系?指学生多说,并大屏幕展示。

圆锥的侧面展开图:沿着圆锥的顶点和底面任意一点的连线斜着剪开会得到一个什么样的图形,先想一下,再指生剪演示。

拓展作业:如果圆柱也这样斜着剪,会得到一个什么样的图形?有兴趣的同学可以回去剪剪看。

3、将如下图所示的长方形、半圆形、梯形和三角形小旗快速旋转。想象一下,小旗旋转一周能形成什么图形?

(1)教师先让学生想象转动后的图形。

(2)课件演示旋转后的图形。

设计意图:通过多个不同层次的练习,目地是让学生在练习中加深对圆柱圆锥的认识,提高学生思维的深刻性和灵活性,体现数学知识“有用”。而第三小题的出现,为进一步培养学生的空间想象能力起了推动作用。

五、回顾梳理,总结提升。

通过这节课的学习,你有什么收获?你能试着从以下三个方面说吗?

1、你学到了什么知识?

2、你学到了哪些方法?

3、你有什么感受?

设计意图:学生自主回顾、梳理所学新知,进一步提高了学生的思维能力和语言表达能力及概括能力。

板书设计:

圆柱和圆锥的认识

底面侧面高方法

圆柱:圆形2个曲形1个无数条比、量

圆锥:圆形1个曲形1个1条

人教版六年级下册《认识圆柱和圆锥》数学教案


人教版六年级下册《认识圆柱和圆锥》数学教案

教学内容:

教材第9~10页的例1和第10页的“练一练”,完成练习二第1~3题。

教学目标:

1.使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.

2.使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

3.使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教学重点:

掌握圆柱、圆锥的特征。

教学难点:

掌握圆柱、圆锥的特征及空间观念的形成。

教学资源:

课件、学生每人准备一个圆柱或一个圆锥形实物。

教学过程:

一、创设情境,初步感知。

1.课件出示:圆柱、圆锥、正方体、长方体等立体图形的示意图

2.教师:这么多物品,你知道它们各是什么形状吗?

指名学生分别说。

谈话:回忆一下学过的图形各有什么特征?学生回答。

谈话:不论长方体还是正方体,它们都是由一些平面图形围成的立体图形,你知道图(4)是什么形状吗?学生回答,教师板书:圆柱

图(5)是什么形状?板书:圆锥

你能说一说日常生活中你见过那些圆柱和圆锥?(指名学生说,如铅笔、烟囱、套管、铅锤等)

这节课就让我们一起进一步认识圆柱、圆锥。

二、合作探究,认识特征

(一)认识圆柱的特征

1.激发兴趣、提出问题

谈话:对于圆柱和圆锥,你想知道有关它们的哪些问题?

学生回答,教师把有关圆柱、圆锥的问题写在黑板上。

谈话:同学们真聪明,提了这么多有价值的问题,今天这节课我们先来研究一下圆柱、圆锥的特点,其它问题我们以后再来研究,好吗?

2.认识圆柱的底面和侧面

教师出示圆柱实物并将直尺靠在圆柱实物边上,告诉学生上下粗细相同的圆柱叫直圆柱。

谈话:请同学们拿出自己准备的圆柱实物,仔细看一看。

①先看一看,你认为它有几个面?

②再摸一摸每个面有什么特征?

③然后小组内互相说一说自己手中的实物和同学的实物有什么特点?

教师巡视解答疑惑。

汇报观察结果

谈话:谁来说说自己的发现?

(先指名学生拿着实物到前面介绍自己的发现,再指名不拿实物说发现。师生及时共同进行评价)

谈话:你是怎么知道上下2个面大小相同的?

指名说,鼓励学生用不同的方法来解决问题。

教师适时加以引导,让学生明确:圆柱上、下两个面是圆形,大小相等,叫圆柱的底面,中间有一个曲面,叫圆柱的侧面。

课件随时演示,将茶筒的底面和侧面抽象出的圆柱立体图形

板书:底面 2个完全相同的圆

侧面 1个曲面

高 两底之间的距离

3.认识圆柱的高

教师从学生拿来的圆柱中随便找两个高矮、粗细不同的圆柱,让学生观察比较。提问:你有什么发现?底面大小决定圆柱粗细,高决定圆柱的高矮。

谈话:哪是圆柱的高,谁来指一指?

谈话:你知道你手中的圆柱形有多高吗?想知道它的高有多少条吗?

小组合作动手量一量圆柱的高,记下测量数据,多量几条,你能发现什么?

教师巡视指导

汇报测量结果。指名一组到讲台前演示,

使学生明确:圆柱的高长度相等,有无数条。

提问:什么是圆柱的高?

学生回答,教师板书:板书:高 上下两底面之间的距离(无数条)

教师出示课件演示圆柱的高

(二)认识圆锥

1.谈话:刚才我们认识了圆柱,现在请同学们拿出自己准备的圆锥形物体,观察圆锥体,摸一摸、量一量,和圆柱比一比,它与圆柱有什么不同?你能发现什么?把你看到的、摸到的与小组内的同学交流交流。

学生小组内交流。教师巡视指导。

指名汇报观察结果。

使学生明确圆锥有一个底面是圆形,有一个侧面是曲面。圆锥是尖的有一个顶点。

教师出示圆锥实物课件

思考:圆锥有几条高?

怎样测量圆锥的高?

学生讨论,教师启发学生用平移的方法将藏在圆锥中的高平移出来测量,学生合作动手测量圆锥模形的高并指名上台演示。

板书:底面 1个 圆形

侧面 1个 曲面

高 1条

2.交流对圆锥的认识

3.小组讨论比较圆柱与圆锥的有什么区别与联系?

4.生活中你还见过那些物体是圆锥形的?

5.学生阅读课本9、10页的内容。

三、巩固练习

1.完成第10页练一练。

判断下面哪些图形是圆柱?哪些是圆锥?为什么?

2.练习二第1题。

结合图形指出圆柱、圆锥各部分的名称

3.练习二第1题。

“连一连”。学生自主连线,全班交流

四、课堂小结 回顾新知

今天这节课你有什么收获?

使学生进一步掌握圆柱和圆锥的特点,巩固圆柱与圆锥的区别与联系。

五、课堂作业

练习二第3题。

板书设计:

认识圆柱和圆锥

观察—比较—归纳

小学六年级数学圆柱的体积的教案


圆柱的体积

教学内容:教材第10~12页圆柱的体积公式,例1、例2和“练一练”,练习二第1~5题。

教学要求:

1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。

2.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。

教具准备:圆柱体积演示教具。

教学重点:理解和掌握圆柱的体积计算公式。

教学难点:圆柱体积计算公式的推导。

教学过程:

一、铺垫孕伏:

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、自主研究:

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。(可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)

(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4.教学例1。

出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)

0.9米=90厘米24×90=2160(立方厘米)

5.做练习二第1题。

让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的?

6.教学“试一试”一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

7.教学例2。

出示例2,审题。小组讨论计算方法,然后学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位,结果保留整数。)

三、巩固练习

第12页,练一练。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。

五、布置作业

练习二第2,3,4,5题及数训。

六、板书设计:

圆柱的体积

长方体的体积=底面积×高

圆柱的体积=底面积×高

V=S×h

2022年六年级数学下册《圆锥的认识》教案设计


\

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册第31—32页例1。教材借助圆锥几何模型,引导学生观察认识圆锥的底面、侧面和高,并通过测量等活动引导学生经历对圆锥概念的感知—抽象—应用等过程,建立圆锥的几何表象。最后从旋转的角度认识圆锥,以促进学生空间观念的发展。

(二)核心能力

在操作中,运用类比的学习方法,认识圆锥的特征,发展推理能力,并在操作过程中形成空间观念。

(三)学习目标

1.借助几何模型,通过圆柱与圆锥的比较,认识圆锥,掌握圆锥的特征,并在辨析中认识圆锥的高,发展推理能力,形成空间观念。

2.通过直观操作,掌握测量圆锥高的方法及从旋转的角度进一步认识圆锥,发展空间观念,积累数学活动经验。

(四)学习重点

掌握圆锥的特征。

(五)学习难点

圆锥高的认识及测量

(六)配套资源

实施资源:《圆锥的认识》名师 课件、圆锥的模型,尺子等

二、 设计

(一)课前设计

1.预习任务

(1)回忆我们是从哪些方面来认识圆柱特征的?它的特征是什么?用自己喜欢的方式进行整理。

(2)收集生活中圆锥形的物体,并观察它们有什么共同的特点?

(二)课堂设计

1.谈话导入

师:课前大家已经收集一些圆锥形的物体,谁来展示一下?

找1—2名学生展示。

师:老师也收集了一些,请大家欣赏。我收集的与你们收集的这些物体的形状有什么共同的特点?

师:这些物体的形状都是圆锥体,简称圆锥。(课件出示圆锥立体图)

这节我们一起来认识圆锥。板书课题。

2.问题探究

(1)圆锥的特征

①迁移类比,引发思考

师:我们在认识圆柱的时候,是从哪些方面认识它的?

独立思考后,自由发言。

引导小结:从底面、侧面、高和侧面展开图。

师:现在认识圆锥,它与圆柱有没有相像的地方?你想从哪方面来认识它?

预设:底面、侧面、侧面展开、高等(根据学生发言板书)

②观察操作,认识特征

师:现在借助手中的圆锥实物来认识它?

同桌两人合作。

③汇报展示,归纳小结

预设1:圆锥的面

生汇报交流。

引导小结:底面是一个圆,侧面是一个曲面,圆锥有一个顶点。

预设2:圆锥高的认识

师:高在哪里?谁愿意指给大家看?

引导学生评价。

师:从圆锥的顶点到底面圆周长上任意一点的距离,是不是圆锥的高?为什么?

学生评价判断。

师:那什么是圆锥的高呢?

学生试着用自己的语言描述。

引导小结:从圆锥的顶点到底面圆心的距离叫做高。

师:圆柱的高有无数条,圆锥的高有几条?为什么?

小结:沿着曲面上的线都不是圆锥的高,圆锥的高只有一条。

课件演示画高,标上字母h。

预设3:圆锥的侧面展开图

师:圆柱的侧面展开图是一个长方形,猜一猜,圆锥的侧面展开图应该是什么形状呢?

学生自由发言。

验证猜想:请一名学生上台,借助老师准备的教具把圆锥体侧面沿着顶点到圆周的一条线段剪开验证。

小结:圆锥体的侧面展开是扇形。

【设计意图:通过回忆圆柱特征探求的过程,引发学生思考,从而迁移类推出从哪些方面探求圆锥的特征,在自主探求的过程中,一直用类比的学习方法,认识并归纳出圆锥的特征,形成表象,建立空间观念。考查目标1】

(2)圆锥高的测量

师:圆锥的高看不见,怎样测量呢?

师:下面就请同学们三人一组,测量你手中的圆锥体的高,小组内先讨论一下,再利用手中的工具,动手试试看。

汇报测量的步骤及测量结果。(请2—3组同学上台演示)

师:其实,老师让你们测的黄色圆锥和绿色圆锥的高度都是一样的,为什么测量结果不太一致呢?你认为测量时要注意什么?(圆锥底面要放平、放在顶点上面的平板也要放平、尺子必须竖直、刻度处理等)

师:为什么上下的平板都要放平,尺子要竖直?

引导学生直观感受什么是“平行平面间的距离”。

【设计意图:在测量高的过程中,通过提出疑问,研究探索,得出结论的过程,让学生感知科学的探讨对解决问题的必要性。】

(3)从旋转的角度进一步认识圆锥

师:把一张长方形的硬纸贴在木棒上,快速转动木棒,转出来的是什么形状?

(圆柱)如果把一张三角形的硬纸贴在木棒上,快速转动木棒,想一想,转出来的是什么形状?

学生猜想后,动手操作。

小结:把一张三角形的硬纸贴在木棒上,快速转动木棒,转出来的形状是圆锥。旋转轴所在的直角边就是圆锥的高,而另一条直角边就是底面的半径,斜边就是顶点到底面周长上任意一点的连线。

【设计意图:通过动手操作,从旋转的角度进一步认识圆锥,为后面灵活运用圆锥的底面半径和高做准备,发展学生的空间观念。】

“圆锥的体积”教学实录与评析


教学目标:

1.通过动手操作实验发现等底等高的圆柱、圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2.能用公式解答有关实际问题。

3.培养动手能力和探索意识。

教学重点:发现关系,得出公式。

教学难点:发现关系。

教学准备:多媒体课件。圆柱、圆锥教具,大米。

教学过程:

一、导入

1.我们认识了圆锥,谁来向大家介绍一下圆锥的各部分及其特征。(圆锥的底面是个圆,圆锥的侧面是个曲面。)什么是圆锥的高?(从圆锥顶点到底面圆心的距离叫圆锥的高)。生活中你见过哪些物体的形状是圆锥体的?

2.师:如果要把一根底面直径是10厘米、长30厘米的圆柱形木料,加工成底面直径是10厘米、高15厘米的圆锥。想一想,该怎么办?课件演示:

(1)先在木料上截取长15厘米的一段。

(2)设法在横截面上找出圆心,即圆锥的顶点。

(3)从顶点到下底面削去多余的部分就可制成一个圆锥了。

比一比:制成的圆锥的底面积与截取圆柱的底面积有什么关系?(相等)制成的

圆锥的高与截取圆柱的高有什么关系?(相等)

师:也就是说制成的圆锥与截取圆柱是等底等高的。估计一下,制成的圆锥的体

积与截取圆柱的体积有怎样的关系?(1/2、1/3,圆锥比圆柱体积小……)

师:同学们的估计对不对呢?我们一起来研究“圆锥的体积”。(板书课题)

[评析:教师从把圆柱形木料加工成圆锥的实际问题出发引入新课,别具匠心。目

的有二:一是把新知(圆锥)与旧知(圆柱)联系起来,为探索活动定向;二是凸现

等底等高现象,为圆锥体积学习先做准备。]

二、探索新知

l.出示圆锥:什么是物体的体积?什么是圆锥的体积?(圆锥所占空间的大小叫做圆锥的体积)。

根据以前的知识要求出这个圆锥的体积有什么办法?(把圆锥浸没在装有水的长方体、正方体或圆柱体容器中,看水面上升的高度,计算出上升的那一部分水的体积,就是这个圆锥的体积)(把圆锥看成一个容器,倒入水,再把水倒人量杯中,水的体积就是圆锥的体积)……

师:这些想法都很好,但有一定的局限性,我们要找一种计算圆锥体积的方法。想一想能不能找到圆锥与以前学过的某种立体图形的体积之间的联系来发现圆锥体积的计算方法。

[评析:教师在这儿强化体和概念很有必要,避免了把教学活动在单纯指导体积公式上面。“怎样求圆锥的体积?”是一个开放问题,学生提出的多种方法更强化了体积意义的认识,有利于空间观念的形成。]

2.讨论:(1)我们以前学过哪几种立体图形?拿哪种立体图形来帮助研究圆锥的体积更合适?为什么?(因为圆锥有一个圆形底面和一个侧面是曲面,圆柱也有一个圆形的底面和一个侧面也是曲面,用圆柱帮助研究圆锥更方便。)

(2)出示4个圆柱、1个圆锥。

师:这里有4个圆柱,选哪一个来帮助研究圆锥的体积呢?演示比较:圆柱与圆锥等底等高,等底不等高,等高不等底,既不等底又不等高。(选等底等高的圆柱与圆锥研究更便于发现规律。)

(3)出示等底等高的圆柱与圆锥以及一小袋大米,想一想,利用这些材料,你能设计一个实验来研究圆锥的体积吗?

圆柱、圆锥学具都是容器,通过研究容积的实验来得出体积的计算公式。

[评析:教师没有把教学活动简单推向具体的实验操作上面,而在前面组织了两个层次的讨论,有利于培养学生的探究意识;提高探索策略的合理性。教师组织对“体积”和“容积”两个概念的辨析,更使概念准确、严谨,提高了课堂教学的科学性。

3.动手实验:二人一组进行操作,注意观察实验过程。

4.汇报操作过程:往空圆锥里装满米然后倒人空圆柱里倒了三次正好倒满。

发现了什么?(圆柱体积是和它等底等高的圆锥体积的3倍,圆锥体积是和它等底等高的圆柱体积的1/3。)

(学生说圆柱体积是圆锥体积的3倍,师出示不等底等高的圆锥、圆柱,问:圆柱体积还是圆锥体积的3倍吗?)

根据学生回答师板书:V锥=1/3V柱

[评析:让学生放手操作比单纯看书、听讲更有利于知识的内化,这也就是当前流行的“做教学”的思想。值得一提的是,在教具、学具日趋高档化的情况下,组织学生因陋就简就地取材,进行剪一剪、拼一排、移一移、倒一倒等操作活动效果明显,值得提倡。]

练习:根据已知圆柱(或圆锥)的体积,求出与它等底等高的圆锥(或圆柱)的体积。

师:根据已知圆柱的体积,乘以1/3就可求出与它等底等高的圆锥的体积,如果圆柱的体积不是直接已知的,你能求出圆锥的体积吗?

也就是可以利用圆柱体积公式“V柱=Sh”得出圆锥体积公式“V锥=1/3Sh”。

5.出示例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

师:要求圆锥体积可以用V =1/3Sh,你会求吗?(学生尝试,师巡视)

汇报: 1/3×19×12=76(立方厘米)

答:这个零件的体积是76立方厘米。

“19×l2”求出的是什么?为什么要“×1/3”。

三、巩固应用

l师:要求圆锥的体积必须知道底面积和高,如果底面积不是直接已知,还会求圆锥的体积吗?

求下列圆锥的体积:(板演订正)

底面半径是4厘米、高21厘米。

底面半径是6厘米、高6分米。

底面周长是18.34分米、高2分米。

2.填空:

(1)圆柱圆锥等底等高,圆柱体积是87立方厘米,圆锥体积是( )立方厘米。若圆锥的体积是34立方厘米,圆柱体积是( )立方厘米。

(2)一个底面积是12平方分米、高6分米的圆柱,它的体积是( )立方分米。如果把它削成一个最大的圆锥,圆锥的体积是( )。削去部分的体积是( ),削去部分的体积是圆柱体积的( ),是圆锥体积的( )。

(3)一个圆柱与圆锥等底等高,圆柱体积比圆锥多18立方米,圆柱体积是〔 〕,圆锥体积是( )。

3.判断:

(l)圆锥体积是圆柱体积的1/3。

(2)如果圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。

(3)圆锥的底面积是3平方厘米,体积是6立方厘米。

(4)等底等高的圆柱与圆锥,圆锥体积比圆柱体积小2/3。

4.小结:这节课我们学习了什么新知识?你是怎样学习的?通过动手实验发现了等底等高的圆锥与圆柱之间的体积关系,并由此推导出了圆锥体积的计算公式。同学们学得都很认真,下面老师还要请同学们来动脑筋:

要使等底等高的圆柱与圆锥体积相等,你有什么办法?(生讲师课件演示)

(1)把圆锥的高(或底面积)扩大3倍,使圆锥的体积扩大3倍,与圆柱的体积相等。

(2)把圆柱的高(或底面积)缩小3倍,使圆柱的体积缩小3倍,与圆锥的体积相等。

[评析:练习设计由浅入深,要求逐步提高,学生的思维也逐步得到发展。需要指出的是,练习设计不仅要从教材出发,还要从学生的实际出发,应该避免不切合学生实际的盲目拔高现象。在本课结尾时,教师运用电教媒体,动态展示底面积和高变化的情况,变想象为直观,难点得到突破,学生兴趣盎然,留下精彩回味。]

四、作业

[总评:本课力图摒弃由教师讲、学生听的传统教学模式,学习采用了以生活实际为中心,师生互动“做数学”的新教学模式,并取得了初步成效。教学活动中学生的主体地位得到加强:从发现问题到确定研究方法,从选择实验材料到推出计算公式都由学生参与得到。教师的主导作用也得到充分发挥;从创设情境、穿针引线到启发引导、查漏补缺,不失时机地把教学活动一波一波地推向高潮。

全课教学设计结构严谨、条理清楚。既抓住了知识的整体落实、更注意了学生能力的培养,还不放过细微环节的科学处理,是一节基础扎实、效果良好、具有新意的好课。]

2022年六年级数学下册第二单元圆柱与圆锥教案


单元目标:

1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。

使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。

使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。

单元重点:

掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。

单元难点:

圆柱、圆锥体积的计算公式的推导

1、圆柱

(1)圆柱的认识

内容:教科书第10—12页圆柱的认识,练习二的第1—4题.

目标:

1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养学生细致的观察能力和一定的空间想像能力。

3、激发学生学习的兴趣。

教学重点:认识圆柱的特征。

教学难点:看懂圆柱的平面图。

教学过程:

一、复习

1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)

2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)

(1)半径是1米 (2)直径是3厘米

(3)半径是2分米 (4)直径是5分米

二、认识圆柱特征

1.整体感知圆柱

(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)

(2)找找圆柱,请同学找出生活中圆柱形的物体。

2.圆柱的表面

(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?

(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)

3.圆柱的高

(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?

(2)引导小结:水柱的高低和水柱的高有关.

(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)

(4)讨论交流:圆柱的高的特点。

①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?

②初步感知:面对圆柱的高,你想说些什么?

归纳小结并板书:圆柱的高有无数条,高的长度都相等。

③深化感知:面对这数不清的高,测量哪一条最为简便?

老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.

4.圆柱的侧面展开(例2)

(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

┌长方形

板书:沿高剪┤ 斜着剪:平行四边形

└正方形

强调:我们先研究具有代表性的长方形与圆柱的关系.

(2)寻求发现.展开的长方形的长和宽与圆柱的关系.

①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)

③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。

①讨论:平行四边形能否通过什么方法转化成长方形?

课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。

②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?

③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.

三、巩固练习

1.做第11页“做一做”的第2题。

2.做第15页练习二的第3题。

教师行间巡视,对有困难的学生及时辅导。

3.做第15页练习二的第4题。

四、布置作业

完成一课三练P15的1、2题。

板书:

┌长方形

沿高剪┤ 斜着剪:平行四边形

└正方形

圆柱的底面周长 → 长方形的长

圆柱的高 → 长方形的宽

(2)圆柱的表面积

教学内容:P13-14页例3-例4,完成“做一做”及练习二的部分习题。

教学目标:

在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

教学重点:掌握圆柱侧面积和表面积的计算方法。

教学难点:运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1.指名学生说出圆柱的特征.

2.口头回答下面问题.

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长×宽.

二、新课

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

① 这两道题分别已知什么,求什么?

② 计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3. 理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.教学例4

(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

① 侧面积:3.14×20×28=1758.4(平方厘米)

② 底面积:3.14×(20÷2)2=314(平方厘米)

③ 表面积:1758.4+314=2072.4≈2080(平方厘米)

5.小结:

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

三、巩固练习

1.做第14页“做一做”。(求表面积包括哪些部分?)

2. 练习七第6题。

板书:

圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

例4:① 侧面积:3.14×20×28=1758.4(平方厘米)

② 底面积:3.14×(20÷2)2=314(平方厘米)

表面积:1758.4+314=2072.4≈2080(平方厘米)

圆柱的表面积练习课

教学内容:练习二余下的练习。

教学目标:

1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

教学重点:

运用所学的知识解决简单的实际问题。

教学难点:

运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)

二、实际应用

1、练习二第13题

(1)复习长方体、正方体的表面积公式:

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。

2、练习二第7题

(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

(2)学生独立完成这道题,集体订正。

3、练习二第9题

(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

4、练习二第16题

(1)学生读题理解题意后尝试独立解题。

(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。

5、练习二第19题

(1)学生小组讨论:可以漆色的面有哪些?

(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。

三、布置作业

练习二第8、10、15、17、18及20题完成在作业本上。

板书:

圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

(3)圆柱的体积

教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

2、教学补充例题

(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(2)指名学生分别回答下面的问题:

① 这道题已知什么?求什么?

② 能不能根据公式直接计算?

③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的.

①V=Sh

50×2.1=105(立方厘米)

答:它的体积是105立方厘米。

②2.1米=210厘米

V=Sh

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

③50平方厘米=0.5平方米

V=Sh

0.5×2.1=1.05(立方米)

答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=Sh

0.005×2.1=0.0105(立方米)

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正.

3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

4、教学例6

(1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

(2)学生尝试完成例6。

① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

三、巩固练习

1、做第21页练习三的第1题.

2、练习三的第2题.

这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

四、布置作业

练习三第3、4题。

板书:

圆柱的体积=底面积×高 V=Sh或V=πr2h

例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

圆柱的体积练习课

教学目标:

1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。

教学过程:

复习

1、复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题

1、练习三第7题。

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题

(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

三、布置作业

完成“一课三练”的相关练习。

2、圆锥

(1)圆锥的认识

教学内容:教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。

教学目标:

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

培养学生的自主探索意识,激发学生强烈的求知欲望。

教学重点:掌握圆锥的特征。

教学难点:正确理解圆锥的组成。

教学过程:

一、复习

1、圆柱体积的计算公式是什么?

2、圆柱的特征是什么?

二、新课

1、圆锥的认识

(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

2、小结

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出平板和底面之间的距离。

4、教学圆锥侧面的展开图

(1)学生猜想圆锥的侧面展开后会是什么图形呢?

(2)实验来得出圆锥的侧面展开后是一个扇形。

5、虚拟的圆锥

(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

三、课堂练习

1、做第24页“做一做”的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

四、总结

关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

(2)圆锥的体积

教学内容:第25~26页,例2、例3及练习四的第3~8题。

教学目的:

通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

板书:圆锥的体积= ×圆柱的体积= ×底面积×高,字母公式:V= Sh

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3、巩固练习:完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?求什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

① 圆柱的侧面积等于多少?

② 圆柱的表面积的含义是什么?怎样计算?

③ 圆柱体积的计算公式是什么?

④ 圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

板书:

圆柱的体积=底面积×高

圆锥的体积= ×圆柱的体积= ×底面积×高

字母公式:V= Sh

3、整理和复习

教学内容:P29页第1-3题,完成练习五。

教学目的:

复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

学生认真的学习态度。

教学重点:圆柱、圆锥表面积、体积的计算

教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别

教学过程:

一、复习圆柱

1、圆柱的特征

(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)

(2)做第29页第1题:指出几个图形中哪些是圆柱。

2、圆柱的侧面积和表面积

(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)

(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)

(3)第29页第2题中求圆柱表面积的部分。

3、圆柱的体积

(1)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)

(2)做第29页第2题中关于圆柱体积的部分。

4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)

二、复习圆锥

1.圆锥的特征

(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)

(2)做第91页第1题的下半题和第2题的第(3)小题.

让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物.

2.圆锥的体积.

(1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

(2)做第29页第2题中有关圆锥体积的部分。

三、课堂练习

1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)

2、做练习五的第2题。

(1)学生审题后思考:求用多少彩纸是求圆柱的什么?

(2)指名板演,其他学生独立完成于课堂练习本上。

3、做练习五第5题。(可建议学生用方程解答)

四、作业

练习五的第3、4、6题。

《小学六年级数学圆锥和圆锥的体积的教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学六年级数学比教案”专题。

文章来源:http://m.jab88.com/j/114174.html

更多

猜你喜欢

更多

最新更新

更多