导学目标:
1、在熟悉的生活环境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
导学重难点:负数的意义。
预习学案:
在实际生活中存在很多具有相反意义的量,比如:
1、气温的零上和零下
2、存折上现金的存入和支取
3、水位高度的上升和下降
4、海拔高度的高于海平面和低于海平面
你还知道哪些具有相反意义的量?
导学案
1、交流总结生活中常见的具有相反意义的量
(1)太阳每天从东方升起,西方落下
(2)公交车的站点有人上车和下车
(3)六年级上学期转来6人,本学期转走6人。
(4)张阿姨做生意,二月份盈利1500元,三月份亏损200元。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
同学们展示交流。
2、认识正负数
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?( 例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)自学例1,回答问题。
1.你能看出那一天三个城市的气温各是多少吗?
哈尔滨: -15 ℃~-3 北京: -5 ℃~5 ℃ 深圳: 12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
2.上海的气温和南京比怎么样?北京的气温和南京的比怎么样?
3.上海和北京的气温一样吗?不一样在哪里?
(2)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)
5.练一练。
1、读一读,填一填。(练习一第1题。)
2、练一练,把这些数填入相应的圈内。
-5,+26,8,-40,-120,+103
正数 负数
课堂检测
一、填一填
1、在0.5,-3,+1/5,0,-0.2,-1/3,+6这些数中,自然数有( ),正数有( ),负数有( ),其中最大的数是( ),最小的数是( )。
2、在“○”里填上“﹥”“﹤”或“=”
-1○-2 0○-9 3.25○+3.25 -3/5○-0.2 -1/3○-2/3 -1/8○+1/10 -15○-15.5 -3.0○-3 -1.25○-1/4
二、写一写。
1、+1350m表示高于海平面1350m.低于海平面200m,记作: 。
2、如果零上3℃记作+3℃,那么零下4℃,记作 。
3、如果向西走30km记作-30km,那么向东走40km记作: 。
4、如果上升10cm记作+10cm,那么下降12cm,记作: 。
5、如果向南走10m记作+10m,那么-20m表示 。
课外拓展
某品牌家用冰箱的冷冻室的温度是零下18℃,冷藏室比冷冻室的温度高22℃,则冷藏室的温度是多少?
板书设计
正数:16,2000,38 ,6.3
数
负数-16,-500,-38 ,-0.4
0既不是正数,也不是负数。
目标
1.知识与技能:认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2.过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
3.情感、态度、价值观:体会数学与日常生活的密切联系。
重、难点
1.理解比例尺的含义。
2.能根据图上距离、实际距离、比例尺中的两个量求第三个量。
教学准备
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图。
教法学法
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
教学过程
一、创设情境(引入新课)
师:同学们,如果要给我们的教室画一张平面图,它应该是什么形状的?
生:长方形。
师:课前我们量过教室的长、宽各是多少?
(生:长大约9米,宽大约6米 。 )
师:请大家在练习本上画出我们教室的平面图。(生画师巡视)
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?
(学生的答案可能有:长方形长9厘米,宽6厘米。
或者是长3厘米,宽2厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是3:2。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长9厘米、宽6厘米,也不可能是长3厘米、宽2厘米,你能想个办法,让别人也知道我们教室有多大吗?
(生动脑想、动手写)
引导学生汇报:
(1)直接写上"教室面积大约50平方米。"
(2)在图上标出"长9米、宽6米。"
(3) 标上"1厘米=1米"。
(4)1厘米怎么能等于1米呢?我认为可以写"1厘米相当于1米。"
( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。现在请拿出课前准备的地图,找一找看看上面有无类似的标注?通过汇报,让学生发现地图上有不同的标注。教师板书不同的标注。
( 引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
二、意义建构(认识比例尺)
1.介绍各种比例尺的名称。
师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。
2.认识比例尺。
如:师问比例尺1:600000是什么意思?
生:就是图上1厘米的长度代表现实中的600000厘米。
师:比例尺1:230000是什么意思?
生:就是地图上1厘米的距离相当于现实中的230000厘米的距离。
师:同学们讲得都对,那到底什么是比例尺?
引导得出:
1.比例尺就是一种可以把实际距离放大或缩小的计量单位。
2.我认为比例尺就是图上长度比上现实中长度。
3.图上画的长度与现实距离的比。
4.图上长度与实际距离的比。
师:(规范学生语言)对,比例尺就是图上距离与实际距离的比。
板书:比例尺=图上距离/实际距离
由上列公式并推导出:图上距离=比例尺x实际距离
实际距离=图上距离/比例尺
(让学生按自己的理解用自己的语言充分描述什么是比例尺,教师再规范语言,这样,一促进了学生思考,二促进了思维外显,三促进了交流。)
三、实际应用(比例尺的应用)
1.出示小黑板(笑笑家平面图)
师:这是笑笑家的平面图。要求笑笑的卧室的实际面积是多少,需要知道哪些条件?(卧室实际的长和宽)怎么解决?
2.学习课本第30页内容。
(1)学生自己阅读。
(2)学生动手测量笑笑家的平面图的图上距离,计算出笑笑卧室的实际面积。先小组内交流自己的想法,然后全班交流。
(3)独立算出笑笑家总面积,再全班交流。
(4)先让学生理解题意,再独立思考、解决,全班交流。
(5)先尝试解决,再全班交流。
3.谁帮老师算算小黑板上的图是按比例尺多少来画的?求出比例尺并标注。
4.师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?
指导学生在画的长是9厘米、宽是6厘米的图上加上了"比例尺1:100"。
在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。
5.完成第31页"试一试"第1题、"练一练"第一题。
四、课堂小结
师:通过本节课的学习,你有什么收获?还有什么问题吗?
【教学目标】
1、通过练习,进一步巩固比例的意义和基本性质。
2、培养学生学习数学的自信心。
【教学重点】掌握解比例的方法,会解比例。
【教学难点】应用比例的意义和基本性质解决生活中的实际问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
小组代表展示对“比例的意义和基本性质”的整理成果,小组内成员可以互相补充完善。
(可能出现文字整理和用具体例子并画图整理的情况。)
【设计意图:让每一位学生动起来,首先让小组内后进生先说,有优生补充。给每类学生展示的舞台。】
二、智慧大冲关
师:下面我们进行智慧大冲关,这里为同学们准备了几关练习题,看你能冲到哪一关。
【设计意图:课堂上我不再把学生划分为几类,而是准备了几关练习题,让学生们各尽其能,让每一个人都能尝到冲关的胜利和喜悦。】
第一关:我学会了比例的意义和基本性质
1、下面是不是比例,为什么?
15:3 20:4 0.3:0.4=3:4 a:b=1:2
2、下面两个比能否组成比例吗?为什么?
3.6∶1.8和0.5∶0.25 40∶80和1/2∶1/4
18:12和30:20
有A类学生读答案,C类学生补充释疑。
生1:3.6∶1.8的比值是2,而且0.5∶0.25得比值也是2,所以他们能组成比例。
生2:3.6∶1.8=0.5∶0.25因为他们内项的积等于外项的积。
生3:我们要区分好比和比例。比例是一个等式,比不是。
师小结:我们可以根据两个相等的比叫做比例和比例的内项积等于外项积两种方法来判断是否能组成比例。
【设计意图:比例的意义和基本性质是本课最基本的知识,让学生在练习中理解巩固提高。所以我把这一知识点设计成第一关。A类学生只要求他们掌握自己喜欢的一种方法,B C类学生要求他们能掌握多种方法。】
第二关:解比例,请独立做,比比看谁最认真。
X∶6.5=6∶4 5∶8= X∶16
由A类学生说答案,出现错题时给他一定的时间改错。
C类学生总结解比例需要注意的事项。
师小结:用内项的积等于外项的积来解比例。
【设计意图:解比例是相对较为容易的练习题,设在第二关,是为了让后进生也能冲过此关,享受冲关成功的快乐,增强自信心。】
第三关:请独立思考,有疑难点小组内讨论解决。
1、请大家用1,2,4,8这四个数组成一些比例
学生展示组成的比例并解释理由。
生1:我的比例是1:2=4:8因为比1:2的前后项同时乘4等于4:8
生2:我的比例也是1:2=4:8,因为比例的内项积和外项积都是8
生3:我的比例也是1:2=4:8,因为1:2= ,4:8=
师总结:判断两个比能否组成比例的基本性质的三种方法:①比例的意义;②比例的基本性质;③比的基本性质。要根据具体情况灵活选择判断方法。
生继续展示其他的比例。
师:前面我们利用4个数可以组成8个不同的比例,并且从中发现了比例的基本性质。
2、a∶b=c∶d,如果把a扩大到原来的10倍,要使比例成立,则( )
① b缩小到原来的 ②c扩大到原来的10倍
③d扩大到原来的10倍 ④c缩小到原来的
【设计意图:稍微进行知识拓展,适当增加难度,为较有能力的同学设计。让他们翘翘脚才能获取知识的果实。极具挑战性的任务,刺激了学生的思维,促进了不同学生的不同发展。同时这里提供的四个数,每两个数之间,都存在着倍数关系,有意地降低了一些难度,使绝大多数学生都能尽可能多写一些,尝到成功的快乐】
第四关:请自由组合,共同探讨,共同解决。
1、根据4×6 = 3×8写出比例,你能写出几个?
2、已知a和b都是自然数,3∶b=a∶8,你知道ab各是多少吗?
下课前2分钟,师出示本题的答案,请优等生们比较讨论。不做统一的讲解。
师:如果这道题同学有什么问题,可以课后问老师。
【设计意图:满足优等生的学习量,让他们在课堂上不再早早学完后就无所事事。设计较难的一关,开发他们的思维,并让他们养成合作互助的学习习惯。】
三、课堂总结:
师:同桌俩互相说说自己在这节课都有哪些收获?(同桌互说后,师随意挑选多个同学说出他们在这一节课的收获)
四、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
学习成绩较差的学生更渴望得到老师和同学们的欣赏,更渴望享受成功的快乐。
在数学练习课的设计上,我摒弃以往的通学通练的模式,而是将练习题由易到难设计成几关,前两关是基础题,后两关是能力题。如此,让优等生能攻克更多的难题,更重要的是让后进生也能体验到冲关成功的快乐,增强他们的信心。提高他们的学习兴趣。
不足之处:练习题的设计层次性还要再加强一些。第三关的题要再稍微降低一些难度,让A层次的学生有时也能做出来。
内容:人教版六年级下册认识比例尺(课本第48、49页)
教材分析:
本节内容是在比的基础上 的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。
教学目标:
1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。
教学重点:理解比例尺的意义。
教学难点:能熟练解答比例尺的有关问题。
教学准备:多媒体课件、直尺、地图
教学过程:
一、情景引入,激发兴趣
师:北京是我国的首都,同学们,2008年北京奥运会取得了巨大成功,中国的悠久历史,灿烂文化,众多的名胜古迹,感受一下我们祖国的美丽!
师:今天老师把我们的祖国和首都北京搬进了课堂。(课件出示:数值比例尺为1:100000000的中国地图和线段比例尺为 的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?
生:把它缩小。
师:老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?请出题考考老师。
生1:我想知道北京到上海之间的实际距离
生2:我想知道我们合肥到北京的实际距离
(师用地图量出地图中北京到上海、合肥到北京的图上距离,很快回答学生的问题)
师:同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?
(设计意图:数学应该来源于生活,我在创设情景时把中国和北京搬进课堂,激发了学生的好奇心,又调动了学生探究新知的积极性)
二、揭示课题,提出疑问
师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。
今天这节课我们就来认识比例尺。(板书:认识比例尺)
师:关于比例尺,你想了解什么呢?
生1:什么叫比例尺?
生2:怎样求比例尺?
生3:比例尺是尺吗?
生4:比例尺有几种形式?
(设计意图:揭示本节课题,让处于对新知好奇的学生提出自己的疑问,带着问题有目的性地学习)
三、 实验对比,得出概念
师:为了解决同学们提出的疑问,我们来做一个实验。
师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。
展示学生的画图结果。
小组的同学互相讨论自己是怎么画的。
生1:我用1厘米表示实际3米。
生2:我用3厘米表示实际3米。
师:图上画的1厘米,3厘米叫“图上距离”,3米叫“实际距离”。
(设计意图:把3米长的线段画在本子上,让学生在动手实践过程中初步感受到比例尺的意义,为后面理解与把握“比例尺”的意义奠定基础)
师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。
展示学生求的比。
师:这些比的前项代表什么?后项又代表什么呢?
生:前项代表图上距离,后项代表实际距离。
师:谁能说说1:300 和 1:100表示什么意思?
生答
师:像这样的比叫做比例尺,课件出示比例尺的定义。
师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)
生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺
师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?
小组的同学互相讨论。
用1:300 或1/300 和 1:100或1/100 等比的形式表示的比例尺叫数值比例尺。它们也可以表示成 和
课件出示:中国地图上“比例尺1:100000000”表示的意义是什么?
师:你们发现1:100 1:300 1:100000000这些比例尺都是把实际距
离怎么样?
生:缩小
师:老师这儿有一个机器上的小零件,你们觉得它怎么样?
生:很小
师:这么小的零件如何把它画在图纸上。
生:把它放大
师:很好!课件出示机器零件的放大图纸。
师:你知道图中2:1表示什么吗?
生:图中2厘米表示实际的1厘米。
师:你们发现这些数值比例尺有什么相同和不同的地方吗?
相同点:
生1:前项表示图上距离,后项表示实际距离。
生2:比的前项或后项为1
不同点: 新 课标 第 一网x kb 1.com
生:1:100 1:300 1:100000000是把实际距离缩小,2:1是把实际距离放大
师:为了计算方便,通常把比例尺写成前项或后项为1的比。
出示课本第49页的“做一做”,指名板演,集体订正。
(设计意图:学生通过独立思考、讨论与交流得出比例尺的意义,并学会了怎样求比例尺,从中体会探索的乐趣)
四、 探讨数值比例尺和线段比例尺的互化
呈现北京市地图让生找出“比例尺 ”
师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。
师:如何把这幅地图的线段比例尺改成数值比例尺?
小组的同学互相讨论尝试改写。师板书例1.
师:谁能说说改写时要注意什么?
师生共同小结。课件出示:(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1
师:怎样把数值比例尺改写成线段比例尺呢?
呈现课本第53页的第1题。学生独立做,集体订正。师强调实际距离的单位要改写成所要求的单位。
(设计意图:将数值比例尺与线段比例尺的互化安排在一起教学,便于学生比较,让学生在尝试性地改写、练习中理解并掌握。)
五、巩固练习,深化概念
1、我会判断
(1)比例尺是一种测量长度的尺子 ( )
(2)一副图的比例尺是80:1,表示把实际距离扩大80倍 ( )
(3)比例尺的后项一定比前项大 ( )
(4)把线段比例尺 改写成数值比例尺是1:8000000 ( )
2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。
3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。
(设计意图:这些练习,既巩固新知,又让学生体验思维的乐趣,既沟通数学与生活的联系,又培养了学生应用数学知识的能力,充分调动了学生学习的积极性)
六、课堂小结
通过这节课的学习,你有什么收获?你认为自己的表现如何?给自己打打分。
七、布置学生填质疑卡
八、作业 课本练习八的第2、3题
比例尺的应用
教学目标
1、知识与技能目标:联系学生的生活实际,理解比例尺的意义。根据比例尺的意义解决实际问题。
2、过程与方法目标:在师生、生生的交流活动中,体会比例尺在实际生活中的运用。结合实际,经历提出问题、分析问题、解决问题的过程,初步学会数学的思维方式,培养问题意识和解决问题的能力。
3、情感态度目标:让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到比例尺的实用性和科学的探索方法,培养学生读图、用图以及小组合作的意识,增强学好数学的信心。培养学生热爱家乡,合作学习的情感。
教学重点:能按给定的比例尺求相应的实际距离。
教学难点:比例尺在生活实际中的运用
教学过程:
一、复习引入:
1 、复习比例尺的意义:
刚才老师了解到同学们的五一安排非常丰富,其实在我们学校周围也有许多美丽的景点。老师给同学们带来了一幅地图,你能看到什么?还能看到什么?(观察的非常细致)比例尺1:10000你是怎么理解的?你还了解比例尺的哪些知识?
预设生1:图上一厘米表示实际中的一万厘米,实际距离是图上距离的一万倍。
2:图上距离/实际距离=比例尺。(板书)
3:同样的知道(比例尺)、(图上距离))我们就可以求(实际距离)
那么知道 (比例尺)、(实际距离)我们就可以求(图上距离)
也就是说知道其中的两个量,我们就可以求出第三个量.()
2、揭示课题。
大家对比例尺有了深刻的了解,其实比例尺在我们生活中有着广泛的应用。今天,我们就一起来研究比例尺的应用。(贴出课题)
二.教学求实际距离.
1、求东门小学到铁塔寺的实际距离。
下面,我们就带上比例尺,进行一次地图上的旅行吧。现在我们从东门小学出发到铁塔寺。
(1)出示课件:
仔细观察所以信息,你能提出哪些数学问题?
预设一:生提:图上距离是多少? (测量)
预设二:从东门小学到铁塔寺实际距离大约多少米?(评:真了不起,这个问题很有价值,我们可以共同研究一下!)
仔细观察所有信息与问题, 要求从东门小学到铁塔寺的实际距离,我们就必须先知道什么? 老师给同学们也提供了同样的地图,请你想一想、量一量、算一算,求出从我们东门小学到铁塔寺的实际距离。
生做,师巡视
汇报交流:
师:谁愿意来说说你的想法?
方法一:方程。
说说你为什么这样列式?
使用这种方法还有什么要提醒大家的吗?
刚才我们根据比例尺的数量关系,利用比例尺的意义直接解决了这个问题。
其他同学还有不同方法吗?
方法二:生:“4÷1/10000”求出的是实际距离。我们组是这样想的:因为“图上距离∶实际距离=比例尺”,在这里图上距离是比的前项,相当于除法中的被除数;实际距离是比的后项,相当于除法中的除数;比例尺相当于图上距离和实际距离的商。而“除数=被除数÷商”,所以可以推出“实际距离=图上距离÷比例尺”,我们组就是根据这种关系求实际距离的。
这种方法也不错。
方法三:我们组是这样想的:根据比例尺“1∶10000”推出实际距离是图上距离的10000倍,所以从学校到铁塔寺的实际距离可用“4×10000”求出,求出结果之后,因为单位不统一,所以还要把实际距离的单位转化为“米”,随即问:怎么列式?(教师板书)
2、比较几种算法。
同学们,很会观察,很会思考。从不同角度,想出多种方法解决了同一个问题。
这些方法中,你更欣赏哪一种?为什么?
教师小结:我们的数学就是那么奇妙,在变与不变之间存在着一定得规律。虽然方法看似不同,但都是利用比例尺的意义来灵活解答的。
3、练习:先量出铁塔寺到济宁人民公园的图上距离,再算出实际距离大约是多少米?
游览了古老的铁塔寺,让我们再一起去从新修建的济宁人民公园逛逛!
仔细观察所有信息,
想一想,要求从铁塔寺到济宁人民公园的时间?我们必须先求什么?
运用我们刚才研究的知识能解决这个问题吗 做在练习本上。
学生独立做,师巡视
生1:(方程)师:怎么想的?
生2:计算
师小结:同学们真了不起,自己解决了这个问题。根据比例尺的意义解决了地图旅行中的问题。其实在我们生活中比例尺的应用还有很多,看一下这两道题,先仔细读题,想一想,做在练习本上。
三、巩固练习。
1、基本练习
出示:按1:1000的比例尺做出的邮电大楼模型,高为16.8厘米,邮电大楼的实际高度是多少米?师读题
独立完成。
按10:1的比例尺放大的手表截面图,图中的表盘的直径是20厘米,这个表盘的实际直径是多少厘米?
学生独立解答; 汇报交流。
2、提高练习:
课前的谈话中,老师了解到同学们有的想到济宁周边游玩。
出示:课件 你能帮助他们解决这个问题吗?
想一想,再做出来。
生读
汇报:两种方法
观察这两种方法,你想说些什么?
3、老师还了解到,有的同学想到省内给地走走,看这是我们山东省的一幅地图。 自己设计出你的出游路线,算一算行程。
四、回顾小结:
在我们课本八十七页,运用我们今天所学知识就能帮助你更加科学合理的安排你的旅程。
祝愿大家能够渡过一个愉快的五一假期。
一、学习目标:
1.认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。认识圆柱、圆锥的底面、侧面和高。
2.理解圆柱的表面积、侧面积、体积的意义。掌握圆柱、圆锥体积公式的推导过程,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4.培养学生仔细观察、勤于动手、大胆联想、善于分析、总结归纳的好习惯。
二、本单元教材分析:
本单元主要包括:圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。
本单元是在学习了长方体和立方体的基础上进行 的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都 比较高,因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的 中起着重要的作用。教材在编写上遵循了“特征—表面—体”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。本单元在教学方法上的一个显著特点是让学生积极、主动地实践探究,要让学生合作探究的过程中自主发现规律,获取知识,提高研究问题和解决问题的能力。
三、教学重难点及突破措施:
重点:理解、掌握圆柱和圆锥的基本特征。会运用公式计算体积,解决有关的简单实际问题。
难点:圆柱、圆锥体积计算公式的推导。
突破措施:
1.加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。
2.让学生经历探索知识的过程,培养自主解决问题的能力。
四、课时安排:
圆柱的认识 1课时
圆柱的表面积 1课时
圆柱的体积 1课时
圆锥的认识 1课时
圆锥的体积 1课时
圆柱的表面积
导学目标:
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
导学重难点:
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
导学准备:圆柱侧面展开图
导学过程:
预习学案:
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
(3)长方形,正方形的表面积怎样计算?
导学案:
(一)小组交流汇报预习情况。
(二)共同探究例3.
1.圆柱的侧面积。
(1)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?(学生观察看到这个长方形的面积等于圆柱的侧面积)
(2)圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.理解圆柱表面积的含义。
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+2个底面的面积
3.小组交流,合作学习例4
(1)学生汇报,集体讲解订正。
(2)师板书:①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=2072.4≈2080(平方厘米)
答:需要用2080平方厘米的面料。
4.课堂小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.
课堂检测:
1. 求下面各圆柱的侧面积。
(1) 底面周长是1.6米,高0.7米。
(2) 底面半径是3.2米,高5分米。
2.一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的3/4.做这个水桶大约要多少铁皮?
课外拓展:
一个圆柱的侧面积是188.4平方分米,底面半径是2分米。它的高是多少?
板书设计:
圆柱的表面积
例3:圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+2个底面的面积
例4: ① 侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=2072.4≈2080(平方厘米)
答:需要用2080平方厘米的面料。
导学反思:
圆柱的认识
导学目标:
1.借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2.培养学生细致的观察能力和一定的空间想像能力。
3.激发学生学习的兴趣。
导学重难点:
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
导学准备:圆柱学具
导学过程:
预习学案:
1.已知圆的半径或直径,怎样计算圆的周长?
2.求下面各圆的周长
(1)半径是1米(2)直径是3厘米
(3)半径是2分米(4)直径是5分米
导学案:
(一)小组交流,全班内汇报预习情况。
(二)共同探究。
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
讨论交流:什么是圆柱的高?圆柱的高的特点。
归纳小结:圆柱的高有无数条,高的长度都相等。
4.圆柱的侧面展开(例2)
(1)动手操作,合作交流。
圆柱的侧面剪开得到一个什么图形?(长方形)
(2)展开的长方形的长和宽与圆柱有什么关系?
同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?学生交流后得出:正方形
5、课堂小结
这节课我们学习了哪些内容?你有什么收获?
课堂检测:
1.做第11页“做一做”的第2题。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的学生及时辅导。
课外拓展:
按照附页1的图样,用硬纸做一个圆柱,量出它的底面直径和高。
板书设计:
圆柱的认识
例1:圆柱: 侧面 底面 高
例2:长方形的长等于圆柱的底面周长
长方形的宽等于圆柱的高
导学反思:
圆柱的体积
导学目标:
1.通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2.初步学会用转化的数学思想和方法,解决实际问题的能力
3.渗透转化思想,培养学生的自主探索意识。
导学重难点:
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
导学准备:圆柱教具
导学过程:
预习学案:
1.什么叫物体的体积?
2.长方体、正方体的体积公式是什么?
导学案:
(一)小组交流汇报预习情况
(二)学生共同探究例5。
1.圆柱体积计算公式的推导。
(1)教师演示学具,学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等许多扇形,把它们拼成一个近似长方体的立体图形.
(2)学生讨论:长方体的底面积和高于圆柱的什么有关?
(3)通过观察讨论,学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=sh)
2.学生讨论:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以写成: V=πr2h
3.分组讨论完成例6.
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
(2)指名口答,讲解订正。
例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
答:502.4大于498,所以这个杯子能装下这袋奶。
4.课堂小结,学生谈收获。
课堂检测:
1.学校建了两个同样大小的圆柱形花坛。花坛的地面内直径是3米,高是0.8米,如果里面填土的高度是0.5米,两个花坛中共需要填土多少方?
2.一个圆柱的体积是80立方厘米,底面积是16平方米。它的高是多少厘米?
板书设计:
圆柱的体积
例5:圆柱的体积=底面积×高V=sh或V=πr2h
例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
答:502.4大于498,所以这个杯子能装下这袋奶。
导学反思:
圆锥的认识
导学目标
1.认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2.通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3.培养学生的自主探索意识,激发学生强烈的求知欲望。
导学重难点:
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
导学准备:圆锥图片 圆锥学具
导学过程:
预习学案:
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
导学案:
(一)小组交流汇报预习情况
(二)共同探究
1.圆锥的认识
(1)观察教科书第23页图片,它们有什么共同特点?
(2)让学生拿着圆锥模型观察,说出自己观察的结果(圆锥有一个曲面,一个顶点和一个面是圆的)
(3)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)
(4)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(5)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。
2.测量圆锥的高。
小组合作:(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
3. 教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)学生实验:得出圆锥的侧面展开后是一个扇形。
4.虚拟的圆锥
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。
5.课堂小结。
课堂检测:
1.用附页2的图样,做一个圆锥,量出它的底面直径和高。
2.练习四:第1、2题。
板书设计:
圆锥的认识
圆锥的特征:底面是圆,侧面是一个曲面,展开是一个扇形
一个顶点一条高
导学反思:
圆锥的体积
导学目标:
1.通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2.借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3.通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
导学重难点:
教学重点:掌握圆锥体积的计算公式。
教学难点:正确探索出圆锥体积和圆柱体积之间的关系。
导学准备:等底等高的圆柱和圆锥模型
导学过程:
预习学案:
1、圆锥有什么特征?
2、圆柱体积的计算公式是什么?
导学案:
(一)小组交流汇报预习情况
(二)共同探究
1.教学圆锥体积的计算公式。
(1)学生做试验,探究圆锥和圆柱体积之间的关系。
用等底等高的圆柱和圆锥做实验,看看它们之间的体积有什么关系?”
(2)用倒水或倒沙子的方法试一试。先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?(学生做好记录,发现倒3次正好把圆柱倒满。)
(3)通过试验,等底等高的圆锥、圆柱的体积有什么关系?你能用字母表示出它们的关系吗?(学生分组讨论)
(4)圆锥的体积公式:
圆锥的体积=1/3×圆柱的体积=1/3×底面积×高
字母公式:V=1/3Sh
2.学生尝试完成例3
(1)出示例3,指名读题,要求沙堆的体积需要已知哪些条件?
(2)学生尝试完成。
(3)集体讲解订正。
沙堆底面积:4÷2=2(米)3.14×2×2=12.56(平方米)
沙堆的体积:1/3×12.56×1.2=5.024(立方米)
答:这堆沙子大约有5.024立方米。
3.课堂小结。
课堂检测:
1.一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
2.一个圆柱的体积是75.36立方米,与它等底等高的圆锥的体积是( )。
3.一个圆锥的体积是141.3立方厘米,与它等底等高的圆柱的体积是( )。
板书设计:
圆锥的体积
圆锥的体积=1/3×圆柱的体积=1/3×底面积×高
字母公式:V=1/3Sh
例3:沙堆底面积:4÷2=2(米)3.14×2×2=12.56(平方米)
沙堆的体积:1/3×12.56×1.2=5.024(立方米)
答:这堆沙子大约有5.024立方米。
导学反思:
面的旋转知识点
1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:
(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:
(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
练习题
1. 圆柱的上下两个面叫做______,它们是________的两个___。圆柱有一个曲面,叫做______。圆柱两个底面之间的距离叫做___。
2. 下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。
1. 圆柱的上下两个面叫做__底面__,它们是___完全相同___的两个_圆_。圆柱有一个曲面,叫做__侧面__。圆柱两个底面之间的距离叫做_高_。
2. 略。
单元要点分析
内容
本单元 内容主要是探究制作扇形统计图和折线统计图的技能问题。
教材分析
本单元内容大在学生已经学习过一些简单的数据整理以及学会制作一些简单的统计图的基础上,来进一步学习有关扇形统计图和折线统计图的绘制技能。
教材编排的内容比较简单,通过两道例题分别说明如何合理制作扇形统计图和折线统计图,使之正确、充分地反映出有关数据,正确体现各统计图的特征,使学生进一步掌握统计图的特点和作用。
三维目标
知识与技能
1、使学生进一步认识统计的意义,掌握扇形统计图和折线统计图的特征与作用,能正确描述统计图中的数据。
2、使学生能正确地制作统计图,充分利用统计图的特征准确、合理、规范地反映出有关数据。
过程与方法
1、经历描述和分析数据的过程,针对统计图提供的数据不清问题,能提出质疑和修改建议,提高制作统计图的技能。
2、在运用统计图解决问题的过程中,发展学生的统计观念。
3、初步形成评价与反思的意识。
情感、态度与价值观
1、能积极参与探究活动,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步。
2、形成实事求是的态度以及进行质疑的习惯。
重难点、关键
重点:绘制扇形统计图和折线统计图。
难点:根据折线统计图正确描述数量变化情况。
关键:根据统计图进行比较、判断时要统一标准。
课时划分
本单元计划课时数:2课时
第一课时:扇形统计图
教学内容
扇形统计图(课文第68页的例1,练习十一相应的练习)
教学目标
1、使学生进一步掌握扇形统计图的特征和作用,能正确描述扇形统计图所反映的有关数据.
2、使学生能正确运用扇形统计图反映有关数据,提高处理数据的技能,发展学生的应用意识和实践能力.
3、初步形成评价与反思的意识.
重难点、关键
重点:扇形统计图.
难点:发现统计图中存在的数据不清的问题.
关键:认真分析统计图中所反映的数据.
教学过程
一、旧知铺垫
电脑课件呈现扇形统计图
某校学生最喜欢的文艺节目情况统计图
(图略)
1、问:从图中你能了解到哪些信息?
(1)喜欢同一首歌的人数占调查人数的45﹪
喜欢相声的人数占调查人数的18﹪
喜欢小品的人数占调查人数的25﹪
喜欢其他文艺节目的人数占调查人数的12﹪
(2)喜欢同一首歌的人数最多
绝大部分同学都喜欢同一首歌,小品和相声
喜欢其他文艺节目的人数最少
2、说一说这是什么统计图,它有什么特征?
(1)扇形统计图
(2)特征:可以清楚地反映出各部分量占总量的百分之几
二探索新知
教学例1
电脑课件出示课文例题统计图
下面是一幅彩电市场各部分品牌占有率的统计图
(图略)
(1)从图中你了解到哪些信息?
A牌彩电占市场销售量的20﹪
B牌彩电占市场销售量的15﹪
C牌彩电占市场销售量的10﹪
D牌彩电占市场销售量的8﹪
其他品牌彩电占市场销售量的47﹪
(2)有人认为A牌彩电最畅销,你同意他的观点吗?
①学生独立思考,分析题中的数量
○2小组交流,学生在小组中说一说自己的看法
○3汇报交流结果
经过讨论,交流,使全体同学懂得:在“其他”里面还可能包含有比A牌更畅销的彩电.所以,从这个统计图不能判断出哪个品牌的彩电最畅销.
(3)建议
上面这幅统计图提供的数据不清,无法全面地反映有关彩电市场各品牌占有率的情况,你有什么修改建议?
①通过交流,使学生懂得:“其他”所占有的份额应该是最小的部分,这样才能全面地反映各个数量占有率的情况,突出扇形统计图的特征和作用.
②建议:在进行数据整理时,将“其他”当中的一些品牌彩电所占份额单单独计算,在统计图中详细标出它的占有率
三巩固练习
完成课文练习十一第1题
(1)说一说,你从图中得到哪些信息.
(2)从图中你能判断出喜欢哪种文艺节目的人数最多吗?为什么?
(3)你有什么修改建议?
四、布置作业
第二课时:折线统计图
教学内容:
折线统计图(教科书第68页的例2,练习十一相应的练习)
教学目标:
1.使学生进一步了角折线统计图的特征和作用,能根据统计图正确描述有关数据的变化情况,发展学生的统计观念。
2.初步形成评价与反思的意识。
教学重点:折线统计图。
教学难点:正确判断数量变化趋势。
教学过程:
一旧知铺垫
1.出示统计图。
2003年北京地区新增“非典”病人数量统计图(4月26日~5月31日)
(图略)
2.回答问题。
(1)这是什么统计图?
(2)这种统计图有什么特征?
(3)说一说这里病人数量的变化情况。
二探索新知
教学例2。
1.出示课文例题。
学生认真观察,分析图中的数量变化情况。
(1)、7月份到12月份的月薪逐月上升。
(2)、7月份:1000元 8月份:1100元 9月份:1170元
10月份:1240元 11月份:1300元 12月份:1400元
(3)、8月份和12月份增加较大。
(4)、两幅统计图反映的员工月薪增长情况是一样的。
3、初看这两幅统计图,你有什么感觉?为什么?
初看时感觉左图中反映的月薪增加比较大。
原因:左图纵轴上每格表示的数量比较小,折线向上的趋势不明显。
右图纵轴上每格表示的数量比较大,折线向上的趋势不明显。
4、你认为哪一幅统计图更能准确反映员工月薪变化情况?为什么?
(1)、学生汇报自己的看法。
(2)、说明理由。(左图每格表示50元,最高1格又表示100元,标准不统一)
5、说一说你有什么体会。
师生共同交流、讨论,使全体学生明白:在根据统计图进行比较,判断时要注意统一标准。
三、巩固练习。
完成课本练习十一第2题。
(1)、初看统计图,你感觉气温的变化剧烈吗?为什么?
(2)、月平均气温的实际差距有多大?
(3)、你会制作折线统计图吗?根据图中数据再绘制一个你认为较为合理反映气温变化的折线统计图。
四、布置作业
数学广角
第一课时《抽屉原理》
内容:教材第70、71页的例1、例2
目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、会用“抽屉原理”解决简单的实际问题。
3、通过操作发展学生的类推能力,形成比较抽象的数学思维。
教学重点:认识“抽屉原理”。
教学难点:灵活运用“抽屉原理”解决实际问题。
教学方法:小组合作,自主探究。
教学准备:若干根小棒,4个纸杯。
教学过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏( 请3位同学上来,摆开2条椅子),并宣布游戏规则。
师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
二、自主学习,初步感知
(一)出示例1:4枝铅笔,3个文具盒。
1、观察猜测
猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?
2、自主探究
(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。
(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。
(3)交流讨论,汇报。可能如下:
第一种:枚举法。
用实物摆一摆,把所有的摆放结果都罗列出来。
第二种:假设法。
如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。
第三种:数的分解。
把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。
(4)、比较优化。
请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?
师:为什么不采用枚举法来验证呢?
数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。
3、引导发现
只要放的铅笔数比盒子的数量多1 ,不管怎么放,总有一个盒子里至少放进2枝铅笔。
(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书? 7本书会怎样呢?9本呢?
1、学生尝试自已探究。
2、交流探究的结果,可能如下:
1)枚举法。
共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书
2)假设法。
把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。
由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。
同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。
9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。
3、观察发现
学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。
4、介绍原理。
师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。
三、应用原理,解决问题
完成教材第72页 “做一做”第1题
四、全课总结,回归生活
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
第二课时 抽取游戏
教学目标
知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。
过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。
情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重难点
1.使学生理解抽取问题中的一些基本原理。
2.找到抽屉原理问题中被分的物品。
教学过程
一、创设情境、引入新课:
师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?
学生思考、发言。
师:学习了这节课我们就能解决类似的问题了。
二、活动探究、深入了解:
(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?
1、学生提出猜想。
2、用预先准备的学具,小组合作交流。4、小组反馈,师相机板书:
3、得出结论:把颜色看作抽屉。
有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。
(二)研究规律
师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?
分小组讨论后汇报。
再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。
小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。
三、巩固训练,促进内化
1、做一做
2、解决课前有趣的问题
3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,
(1)你至少要摸出几根才敢保证有两根筷子是同色的?
(2)至少拿几根,才能保证有两双同色的筷子?为什么?
四、全课总结,畅谈收获
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
第三课时 节约用水
教学目标
知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力
过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。
情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。
教学重难点
所学知识的综合应用
教学过程
一、情景引入,提出问题
1、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出课题。
2、提出问题:为什么要节约用水呢?
二、问题讨论,明白道理
1、交流课前搜集的信息,畅谈有关水的认识。
2、课件展示相关资料,了解地球上水资源状况。
3、交流感想,强化体验。
三、参与活动,亲身体验
师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?
师:课前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!
1、小组交流、展示成果。(一分钟大约滴水50毫升)
2、计算统计,交流感想。
师:根据上面的滴水速度,完成下面的统计表。
一个漏水水龙头漏水情况统计表
时间 1分钟 1小时 24小时 1年
水量(升)
一个水龙头一年浪费多少水?(1立方米约重1吨)
3、评价家庭用水状况,提出节水建议。
4、(课件出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约0.2升。
A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?
B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?
C、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?
(独立分析计算、汇报计算结果,交流想法)
四、解决问题,提出方案
分组讨论一下节约用水的措施。
1、学生分组讨论,多媒体演示生活中的节水片段。
2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。
第六单元整理与复习
3.统计与概率
复习内容:统计
复习目标
使学生系统地掌握统计的基础知识和基本技能,并能解决有关的简单问题。
复习过程:
一回顾与交流
1.收集数据,统计表。
师:我们班要和希望小学的六(1)班建立手拉手班级,你想向手拉手的同学介绍哪些情况呢?
学生可能回答:
①姓名、性别。
②身高、体重。
③兴趣爱好。
(1)调查表。
为了清楚地记录你的情况,同学们设计了一种个人情况调查表。
姓名 性别
身高/cm 体重/kg
最喜欢的学科 最喜欢的运动项目
最喜欢的图书 长大后最希望做的工作
最喜欢的电视节目 特长
①填一填.
②用语言描述清楚还是表格记录清楚?
(2)统计表.
为了帮助整理和分析全班的数据,同学们又设计了一种统计表.
如: XX班学生最喜欢的学科统计表
学科 语文 数学 英语 音乐 美术 体育 其他
人数
①根据上一张表中“最喜欢的学科”统计各学科人数.
②将数据填在统计表中.
③你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识,与同学进行交流。
2.统计图。
(1)你学过几种统计图?分别叫做什么统计图?各有什么特征?
①条形统计图。
特征:清楚表示出各科数量的多少。
②折线统计图。
特征:清楚表示数量的变化情况。
③扇形统计图。
特征:清楚表示各种数量的占有率。
(2) 例1。
①认真观察例题中的图表。
②指出各统计图的名称。
③从图中你能得到哪些信息?
如:从扇形统计图看出,男、女生占全班人数的百分率;
从条形统计图看出,男、女生分别喜欢运动项目的人数;
从折线统计图看出,同学对自己的综合表现满意人数的情况变化趋势。
④还可以通过什么手段收集数据?
如:问卷调查;
查阅资料;
实验活动等。
⑤做一项调查统计工作的主要步骤是什么?
3.平均数、中位数和众数。
(1)什么是平均数?什么是中位数?什么是众数?
(2)出示例题。
身高/m 1.40 1.43 1.46 1.49 1.52 1.55 1.58
人数 1 3 5 10 12 6 3
体重/kg 30 33 36 39 42 45 48
人数 2 4 5 12 10 4 3
①在上面两组数据中,平均数、中位数和众数各是多少?
a. 找出中位数和众数。
b.计算平均数。
②不用计算,你能发现上面两组数据的平均数,中位数和众数之间的大小关系吗?
学生在小组中交流,说一说各自的思维过程和结果。
③你认为用什么数表示上面两组数据的一般水平比较合适?
让学生说出自己的看法,并说明理由。
二、巩固练习
完成练习二十二第1~4题。
复习内容:概率
复习目标:
1.通过复习与整理,使学生进一步丰富对可能性的认识,掌握可能性的基础知识,能计算一些简单事件发生的可能性。
2.经历预测等实验活动,发展学生初步的合情推理能力。
复习过程
一回顾与交流
1.一定、可以,不可能。
下面哪些现象是一定的,哪些是可能的,哪些是不可能的?
(1)明天会下雨。
(2)2008年北京奥运会上,刘翔会创造110米栏纪录。
(3)王明身高会达到14.5米。
(4)人每天都需要喝水。
(5)明年手机会大幅降价。
通过以上练习使学生进一步体会到现实生活中存在着可能的现象。
2.可能性的大小。
(1)出示转盘。
提出问题。
①指针所停的区域有几种可能?是什么情况?
②指针停在什么区域的可能性大?为什么?
③指针停在什么区域的可能性小?为什么?
(2)你还能举出哪些实例,来说明可能性的大小?
如:
①摸球游戏。
摸出黑球的可能性大,摸出白球的可能性小。
②抛图钉。
钉尖向上的可能性大,钉面向上的可能性小。
3.用分数表示可能性的大小。
(1)摸球游戏。
问题:摸到黑球的可能性是多少?摸到白球的可能性是多少?你是怎么算的?
学生不难得出:摸到黑球的可能性是,摸到白球的可能性是。
理由:盒子里共有4个小球,每个小球摸出的可能性为。有3个黑球,那么摸到黑球的可能性为×3=。白球只有1个,摸出的可能性为。
(2掷硬币。
问题:投掷硬币后,硬币正面向上与反面向上的可能性哪个大?
可以请学生上台进行实验,全班学生观察结果。
正面向上的可能性为,反面向上的可能性为。
正、反两面向上的可能性是相等的。
二巩固练习
完成课文练习二十二第5~7题。
4.综合应用
有趣的平衡
复习目标:
使学生初步学会运用数学的思维方式去观察,分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。
复习过程
一活动准备
1.选一根粗细均匀的竹竿,或一根细空心管。(长约1m)
2.在竹竿中点的位置打个小孔并栓上绳子。
3.从中点开始每隔8㎝做一个记号。(或刻小槽)
如图所示:
二探索规律
1.平衡(一):
(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?
①学生思考,回答问题。
两边所放的棋子要同样多。
②演示:
如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。
(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?
①学生思考,说出自己的见解。
塑料袋挂在竹竿左右两边的刻度要相同。
②演示。
如:
左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。
(3)你有什么体会?
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
2.平衡(二):
(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?
①也放4个棋子行不行?会产生什么结果?
②应该放几个?
放3个。
(2)如果左边的塑料袋在刻度6上放1个棋子。
①右边的塑料袋在刻度3上放几个呢?
学生交流,各自说出自己的见解。
②右边的塑料袋在刻度2上呢?
学生不难得出结果,放3个。
③右边的塑料袋在刻度1上呢?
学生不难得出结果,放6个。
(3)你有什么体会?
左右两边棋子个数与刻度数的积要相等。
3.平衡(三):
(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?
(2)实验活动:
①学生动手进行实验活动。
②将实验结果记录下来。
③教师提供表格,引导学生展开活动。
右刻度
所放棋子数
乘积
(3)汇报结果。
右刻度 1 2 3 4 6
所放棋子数 12 6 4 3 2
乘积 12 12 12 12 12
学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
(4)从表中你发现刻度数和所放棋子数成什么比例?
学生观察表中两个量的变化情况,不难发现这两种量成反比例。
内容:设计运动场
复习目标:
使学生会从数学角度提出问题,理解问题,并能综合运用有关圆的周长、面积等知识解决问题,发展应用意识。
复习过程:
一、揭示课题
师:这节课,我们一起来学习运动场的设计,来为学校设计一个小型运动场。
板书课题:设计运动场
二、组织活动
1.介绍运动场的形状。
(1)运动场由1个长方形和两个半圆组成。
如:
(2)长方形的长是两条直线跑道的长,宽是两个半圆的直径。
(3)运动场共设4条跑道,最内侧跑道的内沿长200m ,每条跑道宽1 m。
(4)直线跑道的长定为50米。
出示示意图。
2.解决问题。
(1)画一张比例尺是的平面图。
①说一说你想怎么画。
②直线跑道在图上用多少厘米表示?
③学生画平面图,教师巡视。
④投影展示学生所画的平面图,师生共同评价。
(2)这个运动场的占地面积是多少平方米?
①你认为应该怎样计算运动场的占地面积?
长方形面积+圆面积=运动场面积
②学生尝试独立计算,教师巡视,进行个别指导。
③说一说计算的步骤和结果。
(3)要给运动场铺上20㎝厚的煤渣,一共需要多少立方米的煤渣?
①你认为可以怎样求煤渣的体积?
煤渣的体积=运动场面积×煤渣的厚度
②计算时要注意什么?
单位统一:20㎝=0.2m
③算一算,将结果与同学交流。
(4)设计100 m和200 m赛跑的起跑线。
①你认为先确定哪一道的100米起跑线?位置在哪里比较合理?终点在哪里?
比如:先确定最内侧跑道的起跑线。
②终点线不变,第2道100 m跑的起点线在哪里?
a.讨论:在第一道的前面还是后面?为什么?
b. 算一算:应该在第一道前面的几米处?
③照这样计算,第3道、第4道100 m跑的起点线在哪里?
a.第3道与第2道的起跑线有什么关系?
b.第4道与第3道的起跑线有什么关系?
④如果是200 m赛跑,应该怎样确定各跑道的起跑线?
(5)如果要给4条跑道铺设塑胶,每平方米价格170元,一共需要多少钱?
①说一说你的解答思路。
a.先求跑道面积。
跑道面积=整个运动场占地面积-运动场内间面积(非跑道面积)
椭圆=长方形面积+圆面积
b.再求铺设塑胶价钱。
总价=跑道面积×单价
(6)运动场内还可以设计其他什么运动设施?
如:小足球场;
跳远沙坑
跳高场地;等等。
三、布置作业
目标:
1.使学生通过复习加深对整数、小数、分数和百分数的理解,进一步明确有关数的意义和基本性质,体会整数与小数、小数与分数、分数与百分数的内在联系。
2.让学生体会到数在刻画现实世界中数量关系与空间形式方面的价值。
3.发展学生对数学的积极情感。
教学重点:
分数和小数的基本性质。
教学难点:
整数、小数和分数之间的联系。
教学准备:多媒体
教学过程:
一、复习
1.我们学过了哪些数?举例说明
2.回顾整数的意义www.
(1)追问:-1、-2…是整数吗?
判断:A、自然数都是整数B、整数就是自然数C、负数比0小D、负数都是整数
(2)排出整数的数位顺序表,个级、万级、亿级各包括哪几个数位?每个数位上的计数单位各是多少?相邻两个计数单位之间的进率是多少?
填空:()个一千是一万;一亿里面有()个千万;320000是由()个万组成的;49个亿、49个万个49个一组成的数是()。
3.回顾分数的意义
(1)你能想到哪些用分数表示信息的例子?
(2)谁来说说分数的意义?你对单位“1”是怎样理解的?
(3)什么是分数的基本性质?应用分数的基本性质可以解决哪些问题?
学生交流
4.回顾小数的意义
(1)举例什么样的数是小数?你认为小数与分数有怎样的关系?
(2)小数的性质是什么?
5.回顾百分数的意义
(1)你能想到哪些用百分数表示信息的例子
(2)百分率、百分比
二、巩固练习
1.完成83页的第1题
学生填写在书上
2. 3.7元=()元()角 0.45时=()分
4000千克=()吨 200秒=()分()秒
3.完成84页的第3题
先说说你能获得哪些信息?
指出:“23:00”不表示数量的多少
3.课后完成84页第4题
学生交流
三、小结
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于数的认识的复习
关于数的认识的复习
教学课时:
教学目标:
1.使学生进一步加深对整数、小数、分数和百分数之间的内在联系,掌握因数与公因数、倍数与公倍数、奇数与偶数、素数与合数的含义。巩固读数与写数的方法。
2.进一步体会不同领域数学内容的联系和综合。
3.使学生感受新知识获得的过程,培养创新意识。
教学重点:
分数、小数、百分数之间的联系和区别
教学难点:
整除中的有关概念
教学准备:多媒体
教学过程:
一、整理与反思
1.结合第5题练习。
让学生说说正数与负数、
分数与小数、
百分数与分数的联系和区别。
2.第6题。
先让学生独立写一写,
再让学生适当小结写法。
3.完成第7、8两题
小数点位置的移动怎样引起小数大小的变化?
学生交流
4.结合第9题小结
(1)读表中各数,并在小组里说说自己的想法。怎样读。
(2)改写与求近似数的区别
(3)适当小结整数、小数、分数和百分数大小比较的方法。
二、练习与实践
(1)读出下面的数。
4003 40034003 3043000000
指出:读整数时,每四位一级,每级按个级上的数读,并读出级名“万”或“亿”。
(2)写出下面各数。
三千五百
三千五百万三千五百
十二亿三千五百万
注意:每个数中“0”的个数。
三、小结
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于数的认识的复习
关于数的认识的复习
教学内容: “练习与实践”第10~14题。
教学目标:
1.进一步熟悉分数、小数和百分数的互化的方法和比较分数大小的方法。
2.巩固分数与除法的联系。
3.培养学生的判断、分析等思维能力。
教学重点:
分数、百分数与除法的联系
教学难点:
百分数大小的比较
教学准备:多媒体
教学过程:
一、整理与反思
1.完成第10题
(1)组成的数中素数和合数各有哪些?什么叫素数和合数?
(2)组成的数中哪些有公因数2、3或5?什么样的数能被2、3、5整除?
(3)什么叫做公倍数?
(4)你还能提出哪些问题?
2.说出每个分数的意义。
上面每个分数的分数单位是什么,各有几个这样的分数单位?什么叫分数单位?
3.完成86页的第11题。
结合练习帮助学生进一步明确分数基本性质的应用,并适当总结分数、小数与百分数的互化
4.完成86页12题
让学生找出数的排列的规律
5.完成86页第13题。
先让学生估计每个图形中涂色部分所占的百分比的大小,在让学生写出百分比
6.复习最简分数
(1)提问:怎样的分数是最简分数?谁来举几个最简分数的例子?
(2)在( )里填上适当的数,使每个分数都是最简分数。
①4米是6米的 。
②9千克是12千克的 。
③5厘米是1O厘米的 。
7.完成86页第14题第1小题
先让学生说说可以怎样判断
二、小结
通过学习你有什么收获?
学生交流
三、作业
完成《练习与测试》相关作业。
板书设计
关于数的认识的复习
关于数的运算的复习
教学内容:教科书第87页的“整理与反思”,“练习与实践”第1~4题。
教学目标:
1.使学生进一步加深对整数、小数和分数四则运算意义和方法的理解,能正确进行相关的口
算、笔算和估算。
2.使学生掌握加减法之间、乘除法之间的关系。
3.增强验算意识,培养验算习惯。
教学重点:
四则运算的计算和验算方法
教学难点:
四则运算的算理
教学准备:多媒体
教学过程:
一、整理与反思
1.整数四则运算意义。
提问:通常所说的四则运算是指什么?谁来说一说整数四则运算的意义各是怎样的?
2.计算方法
计算:865+78= 8.65+7.8= 13 +25 =
3、计算整数加减法的时候要把相同数位对齐,计算小数加减法的时候要把小数点对齐。计算分数要先通分化成同分母分数。你能说说这之间的联系吗?(让学生明白:要把相同计数单位的数直接相加)
4.对比练习:完成“练习与实践”的第2题
(1)问:怎样进行整数、小数和分数乘法和除法的计算?
(2)比较每组题的计算方法,体会内在联系。
二、练习与实践
1.完成87页第1题
(1)学生独立填出答案
(2)学生汇报结果,挑选几题,让学生说说怎样算的?
2.完成87页的第3题
(1)学生独立完成。
(2)让学生说说是怎样估算的?
3.完成87页第4题
(1)学生独立完成,个别学生板演。
(2)结合每道题目,让学生说说是怎样验算的?应该注意什么?
(3)说说加法与减法、乘法与除法各部分之间有什么关系?
三.小结
通过学习你有什么收获?
学生交流
四.作业
完成《练习与测试》相关作业。
板书设计
关于数的运算的复习
关于数的运算的复习
教学内容:教科书第88页的第5~8题。
教学目标:
1.使学生进一步认识整数、小数、分数应用题及其数量关系,加深理解和掌握分析应用题的推理过程和解题思路,正确解答百分数应用题。
2.进一步培养学生初步的思维能力和分析、解答应用题的能力。
3.养成独立思考、主动与人合作的习惯。
教学重点:
分析应用题的方法和解题规律
教学难点:
分析数量关系、确定解题思路的方法
教学准备: 多媒体
教学过程:
一、整理与反思
1.口算:
+ = 1 × = 6 -1 =
1÷ = 0.63÷0.7= × =
2.完成88页第5题
(1)学生自己默读题意。
(2)每道题你打算怎样进行计算?
(要结合具体情况合理选择、灵活地运用。)
3.(1)小军买《小学生字典》和《成语词典》各1本,30元够吗?
(2)冬冬买1本《儿童百科知识读本》需付多少元?比原价便宜多少元?
从图中你可以知道哪些信息?;
哪些书按七五折出售?哪些按原价出售?
4.林老师编写了一本《趣味数学故事》,获得稿费3800元。按规定,一次稿费超过800元的部分应按14%的税率纳税。林老师应缴纳税款多少元?
(1)学生读题
(2)提问:应纳税是多少元的14%?
(3)学生独立完成后集体交流
5.完成88页第8题
(1)怎样比较成绩更合理?小组讨论后再计算。为什么单单比较助跑摸高的厘米数不合理。
(2)一名篮球运动员身高188厘米,助跑摸高成绩是351厘米。他助跑摸高的高度是身高的百分之几?
二、小结
通过学习你有什么收获?
学生交流
三、作业
完成《练习与测试》相关作业。
板书设计
关于数的运算的复习
关于数的运算的复习
教学内容:教科书第89页的“整理与反思”,“练习与实践”第1~6题。
教学目标:
1.使学生进一步理解分数四则运算的意义和法则,能正确地进行分数四则运算。
2.使学生能正确地进行整数、小数和分数的四则混合运算,并能灵活地选择合理的方法使计算简便,提高学生的计算能力。
3.培养学生认真计算、自觉验算的良好习惯。
教学重点:
理解算理
教学难点:
运算率的具体应用
教学准备: 多媒体
教学过程:
一、整理与反思
1.说说下面式子的运算顺序
1842+56-453 ×45 ÷45
[( + )× ]÷
总结整数、小数和分数四则运算的运算顺序。
归纳:先乘除后加减,同一级运算从左往右依次计算,有括号的先算括号里的。
2.复习运算定律。
(1)填写书89页的表格
(2)还有哪些运算性质或运算规律?举例说明。2、完成“练习与实践”的第1题
(1)学生说说每题的运算顺序
(2)分组练习
二、练习与实践
1.完成“练习与实践”的第1、2题
(1)学生独立完成
(2)每题你运用的是什么运算性质或运算定律?
2.完成“练习与实践”的第3题
说说每题怎样算比较简便?
总结:根据题目中数的特点,灵活选用合理的方法。
3.完成“练习与实践”的第4题
说说题中的主要数量关系
每页的行数×每行的字数=每页的字数
4.完成“练习与实践”的第5题
(1)让学生标出行走的路线,再列式计算
(2)谁先超过中点?说明在相同时间里,路程的多少与什么有关系?
5.完成“练习与实践”的第7题
学生完成、交流。
三、小结
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于数的运算的复习
关于数的运算的复习
教学内容:教科书90页的“练习与实践”第7~10题。
教学目标:
1.使学生加深理解和掌握分数、百分数应用题的数量关系和解题思路,能正确地分析、解答分数,百分数应用题。
2.使学生进一步明确简单的和稍复杂的分数、百分数应用题之间的联系,以及不同类型的分数、百分数应用题的结构特征和解题规律;
3、进一步提高分析、推理和判断等思维能力。
教学重点:
分析分数应用题的方法
教学难点:
应用题的数量关系
教学准备: 多媒体
教学过程:
一、揭题
今天,我们复习分数、百分数应用题。通过复习,进一步掌握它们的结构特点和解题思路,能正确解答稍复杂的分数、百分数应用题,提高分析数量关系和解答应用题的能力。
二、练习与实践
1.在日常生活中,有哪些百分率?
什么叫出勤率?怎样计算出勤率?
要求出勤率,需要先求什么?
2.某班今天的出勤率为98%,缺席1人,今天到校多少人?
要求这个问题可以先求什么?
3.完成第8题
(1)八月份的用电量比七月份增加百分之几,也就是谁是谁的百分之几?把谁看作单位“1”?
强调:相差数÷单位“1”=相差的百分率
(2)九月份的用电量比七月份节约了百分之几?比八月份呢?
4.某商场有奖销售活动设置了10000张奖券。其中一等奖的中奖率是5%,二等奖是10%,三等奖是30%。一等奖和二等奖的奖券一共有多少张?三等奖的奖券比一等奖多多少张?
(1)学生读题
(2)5%是谁的5%?把谁看作单位“1”
(3)有哪些不同的方法?数量关系是什么?
5.对比练习
(1)三信小学九月份的水电费是480元,十月份的水电费是408元。十月份比九月份节约百分之几?
(2)三信小学九月份的水电费是480元,十月份比九月份节约了15%。十月份的水电费是多少元?
(3)三信小学九月份的水电费是480元,比九月份节约了15%。九月份的水电费是多少元?
这三题都是九月份和十月份之间的比较,有什么不同?
学生独立完成、交流
三、小结
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于数的运算的复习
关于数的运算的复习
教学内容:教科书91页的“练习与实践”第11、12题。
教学目标:
1.使学生进一步掌握分数、百分数应用题的解题思路和解题方法。
2.能正确地解答稍复杂的分数、百分数应用题,提高学生分析推理和解答应用题的能力。
3.培养学生互相协助的意识、能力。
教学重点:
运用所学知识解决简单实际问题
教学难点:
百分数应用题的解题思路和解题方法
教学准备: 多媒体
教学过程:
一、基础练习
1.根据题中的已知条件,请你提出三个不同的问题,再列式。
修一条水渠,已经修了200米,正好是未修米数的45 ,
A______________?列式_________
B_____________ ?列式__________
C_____________?列式___________
2、一种商品。现价比原价降低了10%。这句话的数量关系可表示为:
___________×10%=_____________
_________÷(1-10%)=__________
二、解决实际问题
1.完成91页第11题
安装分时电表前一共要付多少元电费?
安装分时电表后,谷时和峰时分别是多少千瓦时?
学生完成、交流
2.完成91页第12题
阅读上表,你了解到哪些信息?
理解“上浮”与“下浮”是谁的百分之几?
你还能提出什么问题?
学生完成、交流
三、小结
通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于数的运算的复习
关于式与方程的复习
教学内容:教科书92页“整理与反思”,完成“练习与实践”第1~6题。
教学目标:
1.使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。
2.使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。
教学重点:
能正确地用含有字母的式子表示数量及数量关系、计算公式。
教学难点:
会用等式的性质解一些简单的方程。
教学准备: 多媒体
教学过程:
一、整理与反思
今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,能正确地解简易方程。
师:你能自己举出一些用字母表示数的例子吗?
长方形的周长C=2(a+b)
加法交换率a+b=b+a……
师:什么叫方程?方程与等式有什么联系和区别?
(1)教师引导:含有字母的等式叫方程。
(2)表示相等的式子叫等式。方程是含有字母的等式。
师长:你知道等式有哪些性质?举例说一说。
强调:0除外
教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。
二、练习与实践
1.在括号里写出含有字母的式子
(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去()元;小明买n张这样的贺卡,付出10元,应找回()元。
(2)每千瓦时电费0.52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。
2.第2题
(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?
(2)说说解答每题时应注意什么?
3.电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?
学生交流、完成
4.京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)
学生交流、完成
5.长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?
学生交流、完成
4.第6题
强调:根据题目的情况,合理选择方法,列算式或列方程
三、小结
通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于式与方程的复习
关于式与方程的复习
教学内容:教科书93页 “练习与实践”第7~9题。
教学目标:
使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。
教学重点:
能正确地用含有字母的式子表示数量及数量关系、计算公式。
教学难点:
会用等式的性质解一些简单的方程。
教学准备: 多媒体
教学过程:
一、练习与实践
1.完成“练习与实践”第7题
理解“一种药品降价10%”的含义。指名板演,集体交流,说说解题思路
2.完成“练习与实践”第8题
两种衬衫的原价相同,由于打的折扣不同,所以现价不同。108元原是这两中衬衫现价的和。
3.完成“练习与实践”第9题
组织学生分组开展活动,适时互换角色,也可以让学生在小组里开展竞赛,以提高练习效果。
二、小结
通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?
学生交流
三、作业
完成《练习与测试》相关作业。
板书设计
关于式与方程的复习
关于正比例和反比例的复习
教学内容:教科书94页“整理与反思”,完成“练习与实践”的第1~6题。
教学目标:
1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。
2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。
教学重点:
使学生加深认识比例的意义和基本性质。
教学难点:
能判断两个比能能不能组成比例,能比较熟练地解比例。
教学准备: 多媒体
教学过程:
一、整理与反思
今天我们一起来复习正比例和反比例相关知识。
(一)比的知识:
1.谁来举个例子说说什么是比?什么是比的基本性质?
(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)
2.说一说用比的知识可以解决哪些实际问题。
让学生体会比在解决实际问题时的应用。
(二)比和分数、除法的联系
出示:a∶b=( )( ) =( )÷( )(b=?0)
那么比和分数、除法的联系是什么?它们的区别呢?
谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?
(三)比例的知识
1.什么是比例?
2.比和比例有什么关系?(小组讨论后交流)
3.比例有怎样的基本性质?
二、练习与实践
1、完成“练习与实践”第1、2题
(1)第一题:学生独立数出班上男女生人数,再完成此题。
(2)第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。
2、完成“练习与实践”第3、4题
(1)先让学生估计,再说估计的理由 ,再算一算。
(2)解比例,做好后选两题验算一下。
3、完成“练习与实践”第5、6题
(1)先学生独立做最后交流,弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100 。使学生加深对比与百分数关系的理解。
(2)让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。
三、小结
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于正比例和反比例的复习
关于正比例和反比例的复习
教学内容:教科书94页 “练习与实践”的第7~10题。
教学目标:
1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。
2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。
教学重点:
使学生加深认识比例的意义和基本性质。
教学难点:
能判断两个比能能不能组成比例,能比较熟练地解比例 。
教学准备: 多媒体
教学过程:
一、整理与反思
今天我们一起来复习正比例和反比例相关知识。
怎样判断两种量是否成正比例或反比例关系?
学生交流
二、练习与实践
1.完成“练习与实践”第7题
让学生先独立完成,再点评。
2.完成“练习与实践”第8题
引导学生列举几组对应的数值
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题
第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)
第2小题让学生在教材提供的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题
什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)
怎样求图上距离?怎样求实际距离
学生量出的图上距离。
利用提供的线段比例尺,求出相应的实际距离
三、小结
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于正比例和反比例的复习
目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式;使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。
重点:能够正确计算圆柱体体积
教学难点:圆柱体体积公式的推导过程。
教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。
教学过程:
一、复习
1.圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2.长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3.拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么圆柱有几个底面?有多少条高?
二、导入新课
教师:请大家想一想,在学习圆的面积时,我们是怎样把圆变成已学过的图形再计算面积的?
先让学生回忆,同桌的相互说说。
然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。
指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开教师应该给予表扬。
教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
三、新课
1.圆柱体积计算公式的推导。
圆的面积是怎样推导出来的?
圆柱体积计算公式的推导又会怎样呢?(看模型,联想长方体)
推导其体积计算公式
板书:圆柱的体积=底面积×高
教师:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积计算公式: V=Sh
2.教学例1
出示例1
(1)教师指名学生分别回答下面的问题:
这道题已知什么?求什么?
能不能根据公式直接计算?
计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)用投影出示下面几种解答方案,让学生判断哪个是正确的?
V=Sh=50×2.l=105
答:它的体积是105立方厘米。
2.1米=110厘米。
V=Sh=50×210=10500
答:它的体积是1050O立方厘米。
50平方厘米=0.5立方米
V=Sh=0.5×2.1=1.05答:它的体积是1.05立方米。
50平方厘米=0.005平方米
V=Sh=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单i对不正确的第、种解答要说说错在什么地方。
五、作业:
数学书: 9页 第2、3、4、
整理和复习
要求
通过总复习,使学生进一步理解掌握小学阶段学过的数和数的运算、代数初步知识、应用题、量的计算、几何初步知识、简单统计等知识。
使学过的知识条理化、系统化、形成比较完整的知识结构,进一步提高学生的计算能力、解答应用题的能力和综合运用知识解决实际问题的能力。
结合复习内容,向学生进行“事物之间是互相联系的”,“每一事物都有其规律性”等观点的教育,培养学生严格认真的学习态度。
指导
本单元内容是本册教材的重点,也是小学阶段数学知识的重要组成部分,它对于学生系统完整地掌握小学阶段数学基础知识和基本技能,对于掌握这一阶段所学知识之间的联系及知识规律,对于全面复习和巩固知识等都有着重要的意义。为此,在组织学生复习时,应注意以下几个方面。
使学过的知识条理化、系统化。为了便于教师引导学生进行系统地整理和复习,本单元在内容编排上,把小学所学过的数学知识划分为六个部分。第一部分是数和数的运算;第二部分是代数初步知识;第三部分是应用题;第四部分是量与计量;第五部分是几何初步知识;第六部分是简单的统计。在复习各部分知识时,应让学生把以前不同年段学过的同类知识,通过疏理形成一定的条理,能系统地掌握知识。如在数和数和运算中,应使学生明确已经学过的数有:自然数、整数、分数、小数。这里主要包括各种数和意义、性质、数的读法、写法、有关数的运算等知识。又如在复习应用题时,教材中主要根据解答应用题步骤和方法把应用题分为四个类型,即简单应用题、复合应用题、列方程解应用题,用比例知识解应用题。为人便于学生撑,复习中还可以列出图表,更清楚地列出各类不同的知识。这样既有利于学生回顾知识,形成系统,又有利于理解掌握,同时为沟通各部分知识之间的联系奠定了基础。
在加强基础和知识复习的过程中,注重沟通各部分知识之间的联系,使学生掌握知识规律。在复习各部分知识时,应使学生在进一步理解基础知识的基础上,熟练地掌握。应注重让学生理解各部分知识之间的联系和区别,如整数、分数、小数的意义与数的读、写之间,与数的四则计算之间的关系。数的意义是基础,数的读写及四则计算是数的意义的运用过程,在运用的过程中,也是对其意义进一步理解的过程。又如,用算术与用列方程解答应用题之间的联系与区别,正比例的反比例概念之间的联系和区别,简单应用题与复合应用题之间的联系与区别,以各种应用题之间的联系与区别等。中掌握知识规律,培养学生的能力。
查漏补缺,因材施教,提高复习效益。
复习前,应全面调查了解每个学生对各部分知识掌握情况,制定相应的复习计划,有针、对性地进行复习的指导。要树立面向全体学生的思想,精心组织复习内容和方法,使各个层次的学生都有收获,都有提高,都得到发展。
(一)数与代数
整数、小数、分数、百分数的含义
复习目标
1、使学生系统地掌握整数、小数、分数、百分数的意义。
2、使学生熟练的掌握十进制计数法和整数、小数数位顺序表,并能正确的熟练的读、写整数与小数,会比较数的大小。
3、能熟练地进行小数、分数与百分数的互化。
复习过程
一、回顾与交流
1、复习数的意义。
(1)你学过哪些数?说一说它们在生活中的应用。
①学生说出自己的认识和理解。
如:整数、小数、分数、百分数、负数等等。
②联系课文情境图,说出各种数的具体含义。
如:1722是自然数。这里表示词典页码的数量:有1722个1页。
8844.43是小数。表示八千八百四十四又百分之四十三。
是分数。这里表示把全年天数平均分成5份,空气质量良好的占其中的3份。
40%、60%是百分数。这里分别表示羊毛和化纤成分占总成分的百分率。
-25℃是负数。它表示比0℃还低的气温度数。
(2)什么是整数?
①学生说一说什么是整数,整数包括哪些数。
②师生共同概括说明。
像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。整数的个数是无限的。自然数是整数的一部分。“1”是自然数的单位。
③做一做
( )是正数,( )是负数。
( )是自然数,( )是整数。
2、数的读、写
(1)数位顺序表。
整数部分 小数点 小数部分
… 亿级 万级 个级
数位 … 个位 十分位 …
计数单位 … ︵个
︶ 十分之一 …
①填一填,读一读。
②什么是数位?数位与位数相同吗?
③什么是计数单位?相邻的计数单位之间的进率是多少?
④做一做。
27046=2×( )+7×( )+4×( )+6×( )
(2)读法和写法。
①读出下面各数。
106000000 0.006 25.08
a、读一读。
b、说一说读数的方法、要点。
②写出下面各数。
九十万三千 二十亿五千零十八 零点二零零八
a、写一写
b、说一说你是怎么做的。
(3)改写。
①把540000改写成以“万”作单位的数。
②把24940000000改写成以“亿”作单位的近似数。
过程要求:
a、学生改写。
b、说一说改写的方法、要点。
3、数的大小。
(1)怎样比较两个数的大小?
(2)完成练习十三第6题。
4、分数、小数、百分数的互化。
(1)填一填。
小数 分数 百分数
0.25
12.5%
(2)说一说你是怎么做的。
二、巩固练习
完成课文联系十三第1~5题。
过程要求:
(1)学生独立完成,教师巡视,了解情况,进行个别指导
(2)同学之间互相交流。
(3)提问:说一说你是怎么做的,发现问题及时纠正。
三、课堂小结
本节课中你有什么收获?还有什么疑问,请和同学交流。
复习内容:数的认识(二)
复习目标:
1、使学生进一步理解和掌握分数、小数的基本性质。
2、使学生进一步理解因数、倍数、质数、合数等意义,能熟练地找出两个数的公因数、公倍数等。
3、熟练掌握2、3、5倍数的特征,并正确解决有关问题。
复习过程:
一回顾与交流
1、分数的基本性质与小数的基本性质。
(1)分数的基本性质。
①分数的基本性质是什么?
板书:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
②填一填。
③分数大小不变,但什么变了?(分数单位变了)
(2)小数的基本性质。
①小数的基本性质是什么?
板书:小数末尾添上0或者去掉0,小数的大小不变。
② 把下面的小数改写成两位小数。
0.300 2.5 4.3 000
③小数大小不变,但什么变了?(小数计数单位变了)
(3)小数的基本性质与分数的基本性质是一致的.
如:0.3 = 0.30 = 0.300
(3)小数点移动位置,小数的大小会发生什么变化?
如果把小数点向右移动一位、两位、三位……这个小数比原来的数就扩大10倍、100倍、1000倍……如果把小数点向左移位一位、两位、三位……这个数就比原来的数缩小10倍、100倍、1000倍……
2.倍数与因数。
(1)什么是倍数?什么是因数?举例说明。
①4×5=20
20是5和4的倍数。 4和5都是20的因数。
②20的因数还有哪些?一共有多少个?
20的因数有1,20,2,10,4,5。一共有6个。
③4的倍数还有哪些?一共有几个?
4的倍数有4,8,12,……,有无数个。
④着重说明:
最小 最大 个数
因数 1 本身 有限
倍数 本身 / 无限
(2)2、3、5倍数的特征。
①2的倍数特征是什么?举例说明。什么是偶数?什么是奇数?
个位上是0,2,4,6,8的数都是2的倍数。是偶数。
②5的倍数特征是什么?举例说明。
个位上是0或5的数,都是5的倍数。如:10,25,45,60等。
④ 3的倍数特征是什么?举例说明。
各个数位上的数字之和是3的倍数,这个数是3的倍数。如123,303等。
(3)什么是质数?什么是合数?
①什么是质数?最小的质数是什么?
②什么是合数?最小的合数是什么?
③1是什么数?(1是奇数。既不是质数也不是合数)
(4)公因数与公倍数
12的因数 20的因数 50以内6的倍数 50以内8的因数
12和20的公因数 50以内6和8的公倍数
(5)对于“倍数和因数”这一单元,你还知道哪些知识?还有什么疑问?
同学之间互相交流,教师巡视指导,发现问题及时纠正。
二巩固练习
完成课文练习十三第7~9题。
复习内容:数的运算(一)
复习目标:
1. 通过复习使学生进一步系统地理解掌握加、减、乘、除四则运算的意义和计算方法。从而培养学生概括能力与计算能力。
2. 能综合运用所学的知识和技能解决问题,发展应用意识。
复习过程:
一回顾与交流
1.四则运算的意义。
A我们折了36颗红星,还折了28颗蓝星。
B我们买了40瓶矿泉水,每瓶0.9元。
C我们有24m彩带,用 做蝴蝶结,用 做中国结。
(1)创设情境,让学生结合情境图提问题。
问:你能提出哪些用计算解决的问题?
学生提出问题,并说 明解决方法。如:
① 一共折了多少颗星?36+28
② 折的红星比蓝星多多少颗?36-28
③ 买矿泉水用了多少钱?0.9×40
④ 做蝴蝶结用了多少彩带?做中国结用了多少彩带?
24× 24×
⑤ 做蝴蝶结用的彩带是中国结的几分之几?
(2)结合算式说明每一种运算的含义:
①什么叫做加法?小数加法、分数加法的意义相同吗?
②什么叫做减法?小数减法、分数减法的意义相同吗?
③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?
④什么叫做除法?小数除法、分数除法的意义相同吗?
小结:整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的几分之几是多少/
3.四则运算的方法。
(1)整数、小数加法、减法的计算方法各是什么?
(2)分数加法、减法的计算方法各是什么?
(3)它们有什么相同点?
整数加减时,数位对齐;
小数加减时,小数点对齐; 计数单位相同才能相加减。
分数加减时,分数单位相同。
(4)整数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?
小数乘法,先按照整数乘法的计算方法算出积,再看乘数中有几位小数,然后在积中点上小数点。
(5)说一说整数、小数除法的计算方法。
(6)说一说分数乘法和除法的计算方法。
4. 在四则运算中,应注意一些特殊情况。
出示以下内容:
a+0=( ) a×0=( ) 0÷a=( )
a-0=( ) a×1=( ) a÷a=( )
a-a=( ) a÷1=( ) 1÷a=( )
注意:当a作除数时不能为0。
以上交流基础上,让学生进行归纳。
整数、小数 分数(百分数)
加法 意义
计算方法
特殊情况
减法 意义
计算方法
特殊情况
乘法 意义
计算方法
特殊情况
除法 意义
计算方法
特殊情况
5. 四则运算的关系。
四则运算的关系可概括如下:(以提问方式完成下面关系网)
和-一个加数=另一个加数 被减数-差=减数
减数+差=被减数
加法 减法
求相同加数和的算便运算 求相同减数个数的算便运算
乘法 除法
积÷一个因数=另一个因数 商×除数=被除数
被除数÷商=除数
小结:加法是在计数的基础上发展起来的一种连续性计数,是最基本的运算。减法是加法的逆运算,也是加法的还原。乘法又是加法的发展,是求相同加数的加法简便算法。除法是乘法的逆运算,也是乘法的还原,它是减法是发展是求相同减数的减法的简便运算。
二巩固练习
1.完成课文做一做。
2.完成课文练习十四第1、2题
3.课堂小结。
复习内容:数的运算(二)
复习目标:
1、通过复习使学生熟练地掌握四则运算定律和性质,并能根据题目灵活运用这些知识使计算简便。
2、使学生能正确地掌握整数、小数、分数四则混合运算顺序,并能熟练地进行计算。
复习过程:
一回顾与交流。
1、运算定律。
问:我们学过哪些运算定律?
(1)学生回顾曾经学过的运算定律,并与同学交流。
(2)根据表格,填一填。
名称 举例 用字母表示
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法分配律
(3)算一算。
①计算:2.5×12.5×4×8
=(2.5×4)×(12.5×8)……应用乘法交换律、结合律
=10×100
=1000
2.混合运算.
(1)说一说整数四则混合运算顺序.
算一算:(710-18×4)÷2
板书 (710-18×4)÷2
=(710-72)÷2
=638÷2
=319
(2)分数、小数四则混合运算顺序与整数一样吗?
二巩固练习。
1.做一做
2.完成课文练习十四第3~7题。
复习内容:综合练习
练习目标:
1、通过综合复习使学生能牢固地掌握四则混合运算的顺序;能选择合理、灵活的计算方法。
2、能理解四则运算中的数学术语,列综合算式解答文字题;进一步提高计算能力。
练习过程:
一、选择合理的算法进行四则混合运算
1、四则混合运算的顺序是怎样的?
在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
2、练习。(让学生先练习并讲出算法,然后讲评)
二、文字题的列式计算
1、例:用 去除3与2.25的差,所得的商再减去0.9,结果是多少?(先让学生列综合算式,然后讲解)
(1)这里的“结果”是表示什么?(差)
(2)什么数与什么数的差?(商与0.9的差)
(3)那么商是多少?怎么算?
(4)在老师的引导下列出综合算式:
(3-2.25) -0.9
=0.75 -0.9
=1-0.9
=0.1
0.75除以 ,虽然是小数与分数混合运算,但是像这样情况还是要让学生掌握,以提高他们的运算能力。
2.练习
(1)25.16除以3.7的商,减去0.2乘20的积,结果是多少?
25.16÷3.7- 0.2×20
=6.8-4
=2.8
问:这里“的商”“的积”为什么可以不添上括号?
(2)174.8减去74.7,所得的差除以0.91,得出的商再减去100.95,结果是多少?
(174.8-74.7)÷0.91-100.95
=100.1÷0.91-100.95
=110-100.95
=9.05
问:这里“的差”为什么要添上括号?
从以上练习中可以看出,在文字题中数学术语的理解非常重要,特别是在除法中有几种不同的表达方式要着重掌握。
例如:
a÷b可以读着:
(1)a除以b; (2)b除a;
(3) a被b除; (3)b去除a。
可以看出:“a被b除”与“a除以b”是一样的;“b去除a”与“b除a”是一样的。
3.总结:四则混合运算要认真审题,观察题目里的运算符号决定运算顺序,选择合理的简捷算法。对于文字题列成综合算式,审题时要注意最后一步求的是什么?在列式时如果要改变运算顺序,就要合理地使用括号,以及注意题目中的叙述,如“除”与“除以”等。
复习内容:解决问题
复习目标:
1、使学生进一步理解、掌握运用分数乘法、除法知识解决有关问题,发展应用意识。
2、形成解决问题的一些策略、方法,提高学生分析问题和解决问题的能力。
3、形成评价与反思的意识。
4、对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论。
复习过程
一基础练习
1、算一算。
出示算式:
过程要求:
(1)利用计算卡片逐一出示算式。
(2)学生口算,直接说出计算结果。
(3)选择部分算式,说一说计算的过程、方法。
2、列式计算。
(1)200的 是多少? (2)200减少 后是多少?
(3)甲数是500,乙数是甲数的 ,乙数是多少?
(4)甲数是500,乙数比甲数多 ,乙数是多少?
(5)甲数是500,乙数比甲数多 ,乙数比甲数多多少?
过程要求:
①利用电脑课本或幻灯逐一出示以上题目。
②认真读题,说一说题中分率表示的意义。
③求一个数的几分之几是多少,用什么方法计算?
④列式计算。
二知识梳理
1、说一说解决问题,有哪些主要步骤。
学生回答时,不必要求统一表述,让学生说出自己的理解。只要内容正确都应该予以肯定。
如:
(1)认真读题,理解题意;
(2)分析题目中的数量关系;
(3)判断解决问题的方法,列出算式;
(4)计算;
(5)验算。
2、说一说分析数量关系的方法。
过程要求:
(1)学生回顾解决问题时,所采用的方法;
(2)与同学交流,互相探索、整理;
(3)不必作统一要求,让学生找到自己所理解的方法。
3、举例说明。
(1)出示例题。
六年级举行“小发明”比赛,六(1)班同学上交32件作品,六(2)班比六(1)班多交1/4 。六(2)班交了多少件作品?
(2)解决问题。
①认真读题,弄清题意。
②分析数量关系。
A、这里的1/4 表示什么?
( 表示把六(1)班作品平均分成4份,六(2)班的作品比六(1)班多其中的1份)
B、画线段图表示。
C、六(2)班作品是六(1)班的几分之几?
(六(2)班的作品是六(1)班的“1+ 1/4”)
D、求六(2)班交了多少件作品,实际是求什么?
(实际是求六(1)班的“1+1/4 ”是多少,也就是求32件作品的“1+ 1/4”是多少件)
E、求一个数的几分之几是多少,用什么方法计算?请列出算式,并计算结果。
三练习。
1、完成课本做一做。
2、完成课文练习十四第6、7题。
教学内容:式与方程
复习目标:
1、通过复习使学生进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何形体的周长、面积、体积等公式。
2、能根据字母所取的数值,算出含有字母的式子的值。
3、理解方程的含义,会较熟练地解简易方程,能通过列方程和解方程解决一些实际问题。
复习过程
一回顾与交流。
1、用字母表示数。
(1)请学生说一说用字母表示数的作用和意义。
(2)教师说明。
用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。
(3)说一说你会用字母表示什么。
学生回顾曾经学过的用字母表示数的知识,进行简单的整理后再与同学交流。然后汇报交流情况。
①说一说,在含有字母的式子里,书写数与字母、字母相乘时,应注意什么?
如:a乘4.5应该写作4.5a;
s乘h应该写作sh;
路程、速度、时间的数量关系是s=vt.
②你还知道哪些用字母表示的数量关系或计算公式?
学生汇报,教师板书。
如:用字母表示运算定律。
加法交换律:a+b=b+a
加法结合律:a+(b+c)=(a+b)+c
乘法交换律:ab=ba
乘法结合律:a(bc)=(ab)c
乘法分配律:a(b+c)=ab+ac
用字母表示公式。
长方形面积公式:s=ab
正方形面积公式:s=a平方
长方体体积公式:V=abh
正方体体积公式:V=a三次方
圆的周长:C=2πr
圆的面积:S=πR²
圆柱体积:v=sh
圆锥体积:v= sh
(4) 做一做。
完成课文做一做。
2.简易方程。
(1)什么叫做方程?
①含有未知数的等式叫做方程。
②举例。
如:X+2=16 4.5X=13.5 X÷ =30
(2)什么叫做解方程?什么叫做方程的解?
方程的解:使方程左右两边相等的未知数的值叫做方程的解.
解方程:求方程的解的过程,叫做解方程.
(3)解方程。
过程要求:
①学生独立解方程。
②请一位学生上台板演。
③师生共同评价,强调书写格式。
3.用方程解决问题。
(1)出示例题。
学校组织远足活动。原计划每小时行走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?
(2)结合例题说一说用列方程的方法解决问题的步骤。
(3)学生列方程解决问题。
(4)全班反馈、交流。
路程不变
原速度×原时间=实际速度×实际时间
3.8×=实际速度×2.5
(5)做一做。
二巩固练习
完成课文练习十五。
复习内容:常见的量。
复习目标:
1. 通过复习使学生能熟练掌握长度、面积、体积的计量单位,质量单位,时间单位等。能正确使用学过的计量单位解决实际问题。
2. 熟练掌握有关计量单位之间的进率关系,并能正确进行单位换算。
复习过程:
一常见的量与计量单位
师:这一节课,我们来复习常见的量。
板书:常见的量。
问:我们学过哪些量?它们各有哪些计量单位?
过程要求:
(1) 由小组同学共同分类整理。
(2) 教师引导学生列表整理,并巡视课堂进行个别指导。
(3) 全班交流。
分类整理结果如下:
1. 长度、面积、体积单位。
(1) 板书:
长度单位 毫米 厘米 分米 米
面积单位 平方毫米 平方厘米 平方分米 平方米
体积单位 立方毫米 立方厘米 立方分米 立方米
容积单位 毫升 升
(2) 说一说。
① 什么是长度?什么是面积?什么是体积?
长度:两点之间的距离。
面积:物体表面(图形)的大小。
体积:物体所占空间的大小。
② 1厘米有多长?1分米有多长?1米呢?
③ 1平方厘米有多大?1平方分米有多大?1平方米呢?
④ 1立方厘米有多大?1立方分米有多大?1立方米呢?
要求:学生用手比划或举例说明。
(3) 单位之间的进率是多少?有什么联系?
1米=10分米 1分米=10厘米 1米=100厘米
1平方米=100平方分米 1平方分米=100平方厘米
1立方米=1000立方分米 1立方分米=1000立方厘米
(1升=1000毫升)
(4) 你还知道哪些长度、面积或体积单位?
① 学生回顾曾经学过的有关单位。
如:千米、平方千米、公顷等。
② 与同学交流,说一说你对这些计量单位的理解。
2. 质量单位。
(1)常见单位:克(g) 千克(kg) 吨
(2)进率:1吨=1000千克
1千克=1000克
(3)估一估。
①1只梨大约有多少克?1块橡皮擦大约有多少克?
②你的体重是多少千克?
3. 时间单位。
(1) 常见单位:年、月、日、时、分、秒。
(2) 进率:1年=12个月 1月有31日、30日、28日或29日
1年=365天(闰年366天)
1日=24时
1时=60分
1分=60秒
(3) 说一说
① 1节课有多长?1小时大约有多长?
② 1秒是多长?你跑100米大约要多少秒?
4. 人民币单位。
(1) 人民币单位:元、角、分
(2) 进率:1元=10角
1角=10分
二单位换算
1. 说一说。
(1) 如何把高级单位的名数改写成低级单位的名数?
(2) 如何把低级单位的名数改写成高级单位的名数?
2. 练一练。
(1)3时20分=( )分
(2)2.6吨=( )吨( )千克
(3)3080克=( )千克( )克
(4)7立方分米8立方厘米=( )立方分米=( )升
把高级单位的名数改写成低级单位的名数要乘进率,把低级单位的名数改写成高级单位的名数要除以进率。
在学生理解单位改写的原理的基础上,再引导运用小数点移动的方法进行改写。
3. 做一做
三巩固练习
完成课文练习十六
复习内容:比和比例(一)
复习目标:
1. 通过复习使学生进一步理解比和比例的意义与基本性质,能够正确、迅速地求出比值和化简比。
2.进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。
复习过程:
一回顾与交流
1. 比和比例的意义与性质。
出示表格,通过提问进行填空。
比 意义 各部分名 称基本性质
比例
引导提问:
(1)什么叫做比?举例说明。各部分名称是什么?
(2)什么叫做比的基本性质?举例说明。
(3什么叫做比例?举例说明。各部分名称是什么?
(4)什么叫做比例的基本性质?举例说明
2.比和分数、除法的关系?
(1)比和分数有什么关系?
(2)比和除法有什么关系?
(3)出示表格。根据学生回答,适时填空。
比、分数与除法的关系
比 前项 比号 后项 比值
分数
除法
(4)举例。
5:6= ( )÷ )
3.比、比例的基本性质的用处。
(1)比的基本性质的用处?
①化简比。 0.12:2
② 化简比与求比值有什么不同之处?
一般方法 结果
求比值
化简比
(2)比例的基本性质有什么用处? 解比例:
过程要求:
①学生独立练习,教师巡视.
②请一位学生上台板演,并说明根据.师生共同评价.
4.比例尺.
(1) 什么叫做比例尺?
板书:图上距离 : 实际距离 =比例尺
(2)说出下面各比例尺的具体意义.
①比例尺1:3000000表示
②比例尺20:1表示
③比例尺0 30 60km表示
(3)求比例尺.
一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图纸的比例尺是多少?
(4)求实际距离。
在比例尺是 的地图上,量得A地到B地的距离是5厘米。求AB两地的实际距离。
二巩固练习。
1.求图上距离。
甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?
2.完成课本练习十七第1、2题。
复习内容:比和比例(二)
复习目标:
1.使学生进一步理解正、反比例的意义,能正确判断两种量是否成正比例或反比例。
2.使学生能熟练地运用比例来解决有关问题。
复习过程:
一回顾与交流
1.正、反比例的意义。
(1)你是怎样判断两种量成正比例还是成反比例的?
学生回答要点:
正比例:
① 两种相关联的量;
② 其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;
③ 两种量的比值一定。
反比例:
① 两种相关联的量;
② 其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;
③ 两种量的积一定。
(2) 你能用字母表示正、反比例的关系吗?
板书: (一定)……正比例
(一定)……反比例
(3) 举例说明。
①牛奶的袋数与质量的变化情况如下。
牛奶的袋数 1 2 3 4 5
质量(g) 220 440 660 880 1100
说一说:
A这里两种量的变化情况。
B什么量是一定的?
C这两种量成什么比例?
D写一个等量关系式。
②每袋面包个数与所装袋数。
每袋面包个数 2 3 4 6
所装袋数 24 16 12 8
说一说:
A这里两种量的变化情况。
B什么量是一定的?
C这两种量成什么比例?
D写一个等量关系式。
(4) 判断下列各题中两种量是否成比例,成什么比例。
① 速度一定,路程和时间。
② 正方形的边长和它的面积。
③ 订《少年报》数量和所需钱数。
④ 小明从家到学校,行走的速度和时间。
⑤ 圆的周长和半径。
⑥ 圆的面积和半径。
2. 用比例解决问题。
(1) 说一说用比例解决问题的步骤。
① 学生回顾用比例解决问题的过程、步骤。
② 师生共同概括。
A认真审题找出两种相关联的量;B判断两种量成什么比例;C设未知数X;D列出比例式(含有未知数);E解比例;F检验。
(2) 举例。
修一条公路,全长12千米,开工3天修了1.5千米。照这样计算,修完这条公种一共需要多少天?
要求按照解题步骤一步一步完成。
① 两种相关联的量是什么?路程(工作量)和时间
② 两种量成什么比例?说明理由:路程(工作量)
题中的等量关系应该怎样表示?
3天工作量=全部工作量
3天 全部时间
设未知数X,解比例。(过程略)
③检验。
二巩固练习
完成课文练习十七第3~5题。
复习内容:数学思考(一)
复习目标:
1.使学生学会用数学思想方法解决问题,形成一些基本策略,发展实践能力与创新精神。
2.进一步体验数学活动充满着探索与创造。
复习过程:
一回顾与交流
1.教学例5。
6个点可以连多少条线段?
(1) 学生根据题意,画图连线。
问:这样连线方便吗?如果是8个点、10个点呢?
(2)探索解决问题的方法。
①教师引导学生探索点的个数与连线条数的关系。
②小组交流。
③汇报思维的过程与结果。
教师整理后板书。
3个点连成线段的条数:1+2=3(条)
4个点连成线段的条数:1+2+3=6(条)
5个点连成线段的条数:1+2+3+4=10(条)
6个点连成线段的条数:1+2+3+4+5=15(条)
④你有什么发现?
⑤根据规律,你知道8个点、12个点、20个点能连成多少条线段?
学生交流后得出结果:
8个点连成线段的条数:1+2+3+4+5+6+7=28(条)
12个点连成线段的条数:1+2+3+4+5+6+7+8+9+10+11=66(条)
20个点连成线段的条数:1+2+3+……+19=190(条)
2.教学例6。
学校为艺术节选送节目,要从3个合唱节目中选出2个,2个舞蹈节目中选出1个。一共有多少种选送方案?
(1)说一说你的思路。
第一步:从3个合唱节目中选出2个,看有几种选法。
第二步:从2个舞蹈节目中选出1个,看有几种选法。
第三步:把两次选法进行搭配,看共有几种选法。
(2)小组合作,画示意图说明各种选法。
(3)汇报,师生共同完成。
第一步:从3个合唱节目中选出2个。
有3种选法。
第二步:从2个舞蹈节目中选出1个,有2种选法。
第三步:把第一步的3种选法和第二步的2种选法进行搭配。
所以,选送的方案共有6种。
二巩固练习
完成练习十八第1~4题。
复习内容:数学思考(二)
复习目标:
1.使学生学会用列表的方法解决有关问题,提高学生分析能力和解决问题的能力。
2.形成一些解决问题的策略,发展学生的实践能力。
复习过程:
一回顾与交流。
教学例6。
六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。
请问哪两位班长是同班的?
1、 通过读题你能判断出哪两位班长是同班的?
学生很难做出判断。
2、 可以用什么方法把题意给整理、表示出来?
教师引导学生用列表的方法把题意表示出来。
如:用“∕”表示到会,用“○”表示没到会。
A B C D E F
第一次 / / / ○ ○ ○
第二次 ○ / ○ / /
第三次 / ○ ○ ○ / /
3、引导提问。
(1)从第一次到会的情况,你可以看出什么?可以看出:A只可能和D、E或F同班。
(2)从第二次到会的情况,你可以判断出什么?可以判断:A只可能和D或E同班。
(3)从第三次到会的情况,你可以判断出什么?可以判断:A只可能和D同班。
4、那么B和C分别与谁同班。
从第一次到会的情况可以看出,B只可能和E或F同班。
所以,C只可能与E同班。
二巩固练习。
完成课文练习十八第5~7题。
目标:
1.整理和复习估算的方法,结合具体情境进行估算,并解释估算的过程
2.在解决具体问题的过程中,能选择合适的估算方法和策略,养成估算的习惯
3.培养估算意识,发展估算能力
教学重点:
整理和复习估算的方法,能具体情境能选择合适的估算方法和策略
学情分析:
估算在日常生活中有着广泛的应用,它有利于人们是先把握运算的结果的范围,是发展学生数感的重要方面,同时估算也有利于减少运算错误,有利于人们对运算结果进行检验。在实际生活中,我们在解决一些对计算结果要求不太严格,或者难于精确计算的问题时,也经常用到估算的方法,学生有一定的认知基础和生活经验,但学生的估算意识比较薄弱,已经形成根深蒂固的精确极端的习惯,估算的能力也有待进一步加强。
教学过程:
一、感受估算的价值
1.创设情境 提出问题 解决问题
(1) 创设情境:
创设情境:同学们,在这阳光灿烂的日子里,在这优美的环境下学习,估计同学们心情都不错。上次帮三年级同学搬桌子,有兴趣再帮他们一个忙吗?新教学楼建好后,小星星剧场将被拆迁,三年级同学举行“义方百家讲坛”不知该如何选择场地,你能帮忙吗?
2) 现在大家看到的是三年级各班人数的统计表
(3)你会选择那个场所呢?
(4) 指名回答:说一说,你选择了哪个场所,说明理由。
预设1:
将每班的学生人数都看作40个,三个年级就有240人,至少要能容纳240人,因此可以排除食堂。40×6=240(人)——最少
预设2:
将每班的学生人数都看作50个,三年级就有300人,最多只要容纳300人,因此可以选择五楼综合教室。50×6=300(人)——最多
预设3:四舍五入法50×5+40=290(人)大约要290人,所以选择五楼综合教室。
预设4:选中间数47×6=282(人)所以选择五楼综合教室。
预设5:235÷6
预设6:计算出三年级的总人数,再于两个场所能容纳的人数进行比较。
(5)小结:你怎么想到用估算的?问题——只需近似值——估算(更方便)
刚才我们用了这么多的估算方法,每种方法一样吗?(进一法、去尾法、四舍五入法、选中间数法)
这些方法有什么共同点?(根据结果的要求把原始的数据看作整百数或者整十数,便于计算)
三、说一说:生活中和学习中哪些时候用到过估算?
(1)、在我们六年的学习、生活中哪些时候要用到估算、怎么估算呢?课前请同学们收集有关的信息,谁来交流一下,好吗?
如1:买东西的时候要估算带的钱购买几件商品。
2:计算题时要估算结果是多少。
(2)、四人小组交流
(3)老师这里也收集了一些:我们还曾经学会了如何估算一张报纸的字数,也会估算一堆黄豆大约有多少粒。一个操场大约能站下多少人。一个没拧紧的水龙头一年会浪费多少水。看来在我们生活中经常会用到估算。
四、判断下列情景中哪些可以估算。如何估算。
1、那是不是生活中的问题都能用估算来解决呢?老师也有几个问题,你们能帮我看看哪些情况可以用估算解决问题吗?
判断下列4种情况哪些可以用估算解决问题。
1、判断791+118=809 结果是否正确。
2、小红1分钟最多能打49个字,一篇作文共1025个字,小红能在20分钟内打完这篇作文吗?
3、奶奶在超市买了6.70元的蔬菜和12.8元的鱼,当营业员计算奶奶应付多少钱时。
4、牛排每斤12.40元,爷爷买了1.9斤,店主说一共26.60元。店主说的对吗?
2、选择汇报 3为什么不可以?
3、可以估算的分别说说该如何估算。
下面我们就来分析这五种情况如何用估算解决问题
(1)790+110=900(最少)所以结果不正确。
(2)50×20=1000(个)( 最多)所以不能
(4)13×2=26(元) (最多) 所以店主说错了。
五、课堂总结
这节课,通过复习,你有哪些收获?
总结:生活中很多时候要用到估算,在估算时,我们要具体情况具体分析,灵活运用估算的方法,更好的解决实际问题。
六、组织练习:下面我们来看看哪些同学能灵活的运用估算。
在( )里填上合适的数。
七、数学万花筒
在小学阶段我们学习了估算的这么多知识,在你们以后的学习中还将继续学习。比如当在测量或估计一个较大量时,常常用到数量级。
八、布置课堂作业
《2022年新课标人教版六年级数学下册第三单元比例导学案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学六年级数学比教案”专题。
文章来源:http://m.jab88.com/j/113930.html
更多