高三物理《万有引力与航天》教材分析
考点16万有引力与航天
考点名片
考点细研究:要点:以万有引力定律为基础的行星、卫星匀速圆周运动模型及其应用;双星模型、估算天体的质量和密度等;以开普勒三定律为基础的椭圆运行轨道及卫星的发射与变轨、能量等相关内容;万有引力定律与地理、数学、航天等知识的综合应用。
备考正能量:高考对本考点的命题比较固定,基本是一个选择题,个别省份有填空题和计算题出现。考点内容与人造卫星、载人航天、探月计划等热点话题密切联系,考查的频率也越来越高,应密切关注。
一、基础与经典
1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
答案C
解析由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误。火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误。根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确。对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误。
2.关于万有引力定律,下列说法正确的是()
A.牛顿提出了万有引力定律,并测定了引力常量的数值
B.万有引力定律只适用于天体之间
C.万有引力的发现,揭示了自然界一种基本相互作用的规律
D.地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的
答案C
解析万有引力存在于一切物体间,B错误;牛顿提出万有引力定律,卡文迪许测定了万有引力恒量,A错误;万有引力是自然界的一种基本相互作用,它与距离的平方成反比,故C正确,D错误。
3.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星。其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面上。某时刻四颗卫星的运行方向及位置如图所示。下列说法中正确的是()
A.a、c的加速度大小相等,且大于b的加速度
B.b、c的角速度大小相等,且小于a的角速度
C.a、c的线速度大小相等,且小于d的线速度
D.a、c存在在P点相撞的危险
答案A
解析由图可知:ra=rcab,A正确。G=m=mω2r=ma,可知,B、C错误;a、c周期相同,故不可能同时到达同一位置,D错误。
4.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆。设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则()
A.T卫T月
C.T卫r同r卫,由开普勒第三定律=k可知,T月T同T卫,又同步卫星的周期T同=T地,故有T月T地T卫,选项A、C正确。
5.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()
A.距地面的高度变大B.向心加速度变大
C.线速度变大D.角速度变大
答案A
解析根据G=m2r可知r=,若T增大,r增大,h=r-R,故A正确。根据a=可知,r增大,a减小,B错误。根据G=可得v=,r增大,v减小,C错误。ω=,T增大,ω减小,D错误。
6.某行星和地球绕太阳公转的轨道均可视为圆,每过N年,该行星会运行到日地连线的延长线上,如图所示。该行星与地球的公转半径之比为()
A.B.
C.D.
答案B
解析地球公转周期T1=1年,设T2为行星的公转周期,每过N年,行星会运行到日地连线的延长线上,即地球比该行星多转一圈,有N-N=2π,解得:T2=年,故行星与地球的公转周期之比为;由G=mr得:=,即rT,故行星与地球的公转半径之比为,B正确。
7.(多选)“神舟九号”飞船与“天宫一号”成功对接,在飞船完成任务后返回地面,要在A点从圆形轨道进入椭圆轨道,B为轨道上的一点,如图所示,关于“神舟九号”的运动,下列说法中正确的有()
A.在轨道上经过A的速度小于经过B的速度
B.在轨道上经过A的速度小于在轨道上经过A的速度
C.在轨道上运动的周期小于在轨道上运动的周期
D.在轨道上经过A的加速度小于在轨道上经过A的加速度
答案ABC
解析“神舟九号”飞船在轨道上经过远地点A的速度小于经过近地点B的速度,选项A正确;飞船从圆形轨道进入椭圆轨道,需要在A点减速,选项B正确;由开普勒第三定律=k可知,轨道半长轴越长周期越长,轨道上的周期小于轨道上的运动周期,选项C正确;a=可知,rA不变,所以在轨道上经过A的加速度等于在轨道上经过A的加速度,选项D错误。
8.(多选)设同步卫星离地心的距离为r,运行速率为v1,加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比值正确的是()
A.=B.=C.=D.=
答案BD
解析地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a1=ω2r,a2=ω2R可得,=,B项正确;对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供向心力,即m=;m=,得=,D项正确。
9.(多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称为双星系统。在浩瀚的银河系中,多数恒星都是双星系统。设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图所示。若,则()
A.星球A的质量一定大于B的质量
B.星球A的线速度一定大于B的线速度
C.双星间距离一定,双星的质量越大,其转动周期越大
D.双星的质量一定,双星之间的距离越大,其转动周期越大
答案BD
解析设双星质量分别为mA、mB,轨道半径为RA、RB,两者间距为L,周期为T,角速度为ω,由万有引力定律可知:=mAω2RA,=mBω2RB,又有RA+RB=L,可得=,G(mA+mB)=ω2L3。由知,mAvB,B正确。由T=及G(mA+mB)=ω2L3可知C错误,D正确。
10.(多选)在太阳系中有一颗半径为R的行星,若在该行星表面以初速度v0竖直向上抛出一物体,上升的最大高度为H,已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计。根据这些条件,可以求出的物理量是()
A.太阳的密度
B.该行星的第一宇宙速度
C.该行星绕太阳运行的周期
D.卫星绕该行星运行的最小周期
答案BD
解析由v=2gH,得该行星表面的重力加速度g=
根据mg=m=mR,解得该行星的第一宇宙速度v=,卫星绕该行星运行的最小周期T=,所以B、D正确;因不知道行星绕太阳运动的任何量,故不能算太阳的密度和该行星绕太阳运动的周期,所以A、C错误。
二、真题与模拟
11.20xx·全国卷]关于行星运动的规律,下列说法符合史实的是()
A.开普勒在牛顿定律的基础上,导出了行星运动的规律
B.开普勒在天文观测数据的基础上,总结出了行星运动的规律
C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因
D.开普勒总结出了行星运动的规律,发现了万有引力定律
答案B
解析行星运动的规律是开普勒在第谷长期观察行星运动数据的基础上总结归纳出来的,并不是在牛顿运动定律的基础上导出的,但他并没有找出行星按这些规律运动的原因,A、C错误,B正确。牛顿发现了万有引力定律,D错误。
12.20xx·江苏高考](多选)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、Ek、S分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积。下列关系式正确的有()
A.TATBB.EkAEkB
C.SA=SBD.=
答案AD
解析卫星做圆周运动,万有引力提供向心力,即G=m=mR2,得v=,T=2π,由于RARB可知,TATB,vAa1a3B.a3a2a1
C.a3a1a2D.a1a2a3
答案D
解析对于东方红一号卫星,在远地点由牛顿第二定律可知=m1a1,即a1=(r1=2060km)。对于东方红二号卫星,由牛顿第二定律可知=m2a2,即a2=(r2=35786km)。因为r1a2,由圆周运动规律可知,对东方红二号卫星:a2=r2,对地球赤道上的物体:a3=R,因为r2R,所以a2a3,综上可得a1a2a3,D正确。
15.20xx·天津高考]我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()
A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
答案C
解析卫星绕地球做圆周运动,满足G=。若加速,则会造成G,卫星将做离心运动,向外跃迁。因此要想使两卫星对接绝不能同轨道加速或减速,只能从低轨道加速或从高轨道减速,C正确,A、B、D错误。
16.20xx·广东高考](多选)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到v时,可摆脱星球引力束缚脱离该星球。已知地球、火星两星球的质量比约为101,半径比约为21。下列说法正确的有()
A.探测器的质量越大,脱离星球所需要的发射速度越大
B.探测器在地球表面受到的引力比在火星表面的大
C.探测器分别脱离两星球所需要的发射速度相等
D.探测器脱离星球的过程中,势能逐渐增大
答案BD
解析由G=m得,v=,则有v=,由此可知探测器脱离星球所需要的发射速度与探测器的质量无关,A项错误;由F=G及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B项正确;由v=可知,探测器脱离两星球所需的发射速度不同,C项错误;探测器在脱离两星球的过程中,引力做负功,引力势能是逐渐增大的,D项正确。
17.20xx·重庆高考]宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()
A.0B.C.D.
答案B
解析对飞船进行受力分析,可得G=mg,得g=,B项正确。
18.20xx·江苏高考]过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕。“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的。该中心恒星与太阳的质量比约为()
A.B.1C.5D.10
答案B
解析行星绕恒星做匀速圆周运动,万有引力提供向心力,由G=mr2,得M=,则该中心恒星的质量与太阳的质量之比=·=3×=1.04,B项正确。
19.20xx·全国卷](多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。已知探测器的质量约为1.3×103kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2。则此探测器()
A.在着陆前的瞬间,速度大小约为8.9m/s
B.悬停时受到的反冲作用力约为2×103N
C.从离开近月圆轨道到着陆这段时间内,机械能守恒
D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度
答案BD
解析由题述地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,由公式G=mg,可得月球表面的重力加速度约为地球表面重力加速度的,即g月=1.6m/s2,由v2=2g月h,解得此探测器在着陆瞬间的速度v≈3.6m/s,选项A错误;由平衡条件可得悬停时受到的反冲作用力约为F=mg月=1.3×103×1.6N≈2×103N,选项B正确;从离开近月圆轨道到着陆这段时间,由于受到了反冲作用力,且反冲作用力对探测器做负功,所以探测器机械能减小,选项C错误;由G=m,G=mg,解得v=,由于地球半径和地球表面的重力加速度均大于月球,所以探测器在近月轨道上运行的线速度要小于人造卫星在近地轨道上运行的线速度,选项D正确。
20.20xx·山东高考]如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。以下判断正确的是()
A.a2a3a1B.a2a1a3
C.a3a1a2D.a3a2a1
答案D
解析因空间站建在拉格朗日点,所以月球与空间站绕地球转动的周期相同,空间站半径小,由a=ω2r得a1a2a1,选项D正确。
一、基础与经典
21.宇航员驾驶宇宙飞船到达月球表面,关闭动力,飞船在近月圆形轨道绕月运行的周期为T;接着,宇航员调整飞船动力,安全着陆,宇航员在月球表面离地某一高度处将一质量为m的小球以初速度v0水平抛出,其水平射程为s。已知月球的半径为R,引力常量为G,求:
(1)月球的质量M;
(2)小球开始抛出时离地的高度;
(3)小球落地时重力的瞬时功率。
答案(1)(2)(3)
解析(1)飞船在近月圆形轨道上运动时,月球对飞船的万有引力提供向心力,有G=mR2,
解得月球的质量M=。
(2)小球做平抛运动,水平方向做匀速直线运动,有s=v0t,
竖直方向做自由落体运动,有h=gt2,
在月球表面,小球受到月球的万有引力近似等于重力,有
G=mR2=mg,
联立解得小球开始抛出时离地的高度为h=。
(3)小球落地时速度的竖直分量为v=gt=,
重力的瞬时功率为P=mgv=m·=。
22.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O点始终共线,A和B分别在O点的两侧。引力常量为G。
(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者的平方之比。(结果保留3位小数)
答案(1)2π(2)1.012
解析(1)A和B绕O点做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等,且A、B的中心和O点始终共线,说明A和B组成双星系统且有相同的角速度和周期。设A、B做圆周运动的半径分别为r、R,则有
mω2r=Mω2R,r+R=L,
联立解得R=L,r=L,
对A,根据牛顿第二定律和万有引力定律得
=m2L,
解得T=2π。
(2)由题意,可以将地月系统看成双星系统,由(1)得
T1=2π,
若认为月球绕地心做圆周运动,则根据牛顿第二定律和万有引力定律得
=m2L,
解得T2=2π,
所以T2与T1的平方之比为
===1.012。
二、真题与模拟
23.20xx·天津高考]万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性。
(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。已知地球质量为M,自转周期为T,万有引力常量为G。将地球视为半径为R、质量均匀分布的球体,不考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数为F0。
a.若在北极上空高出地面h处称量,弹簧秤读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留2位有效数字);
b.若在赤道地面称量,弹簧秤读数为F2,求比值的表达式。
(2)设想地球绕太阳公转的圆周轨道半径r、太阳的半径为RS和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变,仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?
答案(1)a.=0.98b.=1-
(2)与现实地球的1年时间相同
解析(1)设小物体质量为m。
a.在北极地面G=F0,在北极上空高出地面h处
G=F1,
得=,h=1.0%R时,=≈0.98。
b.在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G-F2=mR,
得=1-。
(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力。设太阳质量为MS,地球质量为M,地球公转周期为TE,有G=M,得TE==,其中ρS为太阳的密度。
由上式可知,地球公转周期TE仅与太阳的密度、地球公转轨道半径与太阳半径之比有关。因此“设想地球”的1年与现实地球的1年时间相同。
24.20xx·云南重点中学联考]有一质量为m的航天器靠近地球表面绕地球做匀速圆周运动(轨道半径等于地球半径),某时刻航天器启动发动机,向后喷气,在很短的时间内动能变为原来的,此后轨道变为椭圆,远地点与近地点距地心的距离之比是21,经过远地点和经过近地点的速度之比为12。已知地球半径为R,地球表面重力加速度为g。
(1)求航天器在靠近地球表面绕地球做圆周运动时的周期T;
(2)求航天器靠近地球表面绕地球做圆周运动时的动能;
(3)在从近地点运动到远地点的过程中航天器克服地球引力所做的功为多少?
答案(1)2π(2)mgR(3)mgR
解析(1)由牛顿第二定律mg=m2R,
解得T=2π。
(2)设航天器靠近地球表面绕地球做圆周运动时的速度为v1,由mg=m,解得Ek1=mv=mgR。
(3)由题意,喷气后航天器在近地点的动能为Ek2=Ek1=mgR,
航天器在远地点的动能为Ek3=Ek2=mgR。
由动能定理得航天器克服地球引力所做的功为
W=Ek2-Ek3=mgR。
作为优秀的教学工作者,在教学时能够胸有成竹,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师在教学期间更好的掌握节奏。你知道怎么写具体的教案内容吗?为此,小编从网络上为大家精心整理了《20xx高考物理《万有引力与航天》材料分析》,仅供您在工作和学习中参考。
20xx高考物理《万有引力与航天》材料分析
第4节万有引力与航天
考点一|开普勒行星运动定律
1.第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在这些椭圆的一个焦点上.
2.第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.
3.第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.其表达式为=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k是一个对所有行星都相同的常量。
1.(20xx·余姚调研)关于太阳系中各行星的轨道,以下说法中正确的是()
A.所有行星绕太阳运动的轨道都是椭圆
B.有的行星绕太阳运动的轨道是圆
C.不同行星绕太阳运动的椭圆轨道的半长轴是相同的
D.不同的行星绕太阳运动的轨道都相同
A[八大行星的轨道都是椭圆,A正确,B错误;不同行星离太阳远近不同,轨道不同,半长轴也就不同,C、D错误.]
2.关于行星的运动,下列说法中不正确的是()
A.关于行星的运动,早期有“地心说”与“日心说”之争,而“地心说”容易被人们所接受的原因之一是由于相对运动使得人们观察到太阳东升西落
B.所有行星围绕太阳运动的轨道都是椭圆,且近地点速度小,远地点速度大
C.开普勒第三定律=k,式中k的值仅与中心天体的质量有关
D.开普勒三定律也适用于其他星系的行星运动
B[根据开普勒第二定律可以推断出近地点速度大,远地点速度小,故选项B错误.]
3.(20xx·温州模拟)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
C[太阳位于木星椭圆运行轨道的一个焦点上,不同的行星运行在不同的椭圆轨道上,其运行周期和速度均不相同,不同的行星相同时间内,与太阳连线扫过的面积不相等,A、B、D均错误;由开普勒第三定律可知,C正确.]
考点二|万有引力定律及应用
1.万有引力定律
(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的平方成反比.
(2)表达式:F=G
G为引力常量:G=6.67×10-11N·m2/kg2.
(3)适用条件
①公式适用于质点间的相互作用.当两个物体间的距离远大于物体本身的大小时,物体可视为质点.
②质量分布均匀的球体可视为质点,r是两球心间的距离.2.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即
G=man=m=mω2r=m.
(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G=mg(g表示天体表面的重力加速度).3.天体质量和密度的估算
(1)利用天体表面的重力加速度g和天体半径R.
由于G=mg,故天体质量M=,
天体密度ρ===.
(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.
①由万有引力等于向心力,即G=mr,得出中心天体质量M=;
②若已知天体半径R,则天体的平均密度
ρ===.
(20xx·浙江10月学考)如图441所示,“天宫二号”在距离地面393km的近圆轨道运行,已知万有引力常量G=6.67×10-11N·m2/kg2,地球质量M=6.0×1024kg,地球半径R=6.4×103km.由以上数据可估算()
图441
A.“天宫二号”质量
B.“天宫二号”运行速度
C.“天宫二号”受到的向心力
D.地球对“天宫二号”的引力
B[根据万有引力定律,F向=F万=G=m,其中m为卫星质量,R为轨道半径,即地球半径与离地高度之和,则已知G、M、R,可得到运行速度v,无法得到卫星质量m,亦无法求得F向、F万.故选B.]
1.嫦娥三号远离地球飞近月球的过程中,地球和月球对它的万有引力F1、F2的大小变化情况是()
A.F1、F2均减小
B.F1、F2均增大
C.F1减小、F2增大
D.F1增大、F2减小
C[根据万有引力定律F=G,可知F1减小、F2增大,故选C.]
2.地球质量大约是月球质量的81倍,一飞行器位于地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,飞行器距月球球心的距离与月球球心距地球球心之间的距离之比为()
A.1∶9B.9∶1
C.1∶10D.10∶1
C[设月球质量为m,则地球质量为81m,地月间距离为r,飞行器质量为m0,当飞行器距月球为r′时,地球对它的引力等于月球对它的引力,则G=G,所以=9,r=10r′,r′∶r=1∶10,故选项C正确.]
3.20xx年12月17日,我国发射了首颗探测“暗物质”的空间科学卫星“悟空”,使我国的空间科学探测进入了一个新阶段.已知“悟空”在距地面为h的高空绕地球做匀速圆周运动,地球质量为M,地球半径为R,引力常量为G,则可以求出()
A.“悟空”的质量
B.“悟空”的密度
C.“悟空”的线速度大小
D.地球对“悟空”的万有引力
C[根据万有引力充当向心力G=m,可求得“悟空”的线速度v=,因无法求出“悟空”的质量,从而无法求出“悟空”的密度和地球对“悟空”的万有引力,选项C正确,A、B、D错误.]
4.对于万有引力定律的表达式,下列说法正确的是()
A.G是引力常量,是人为规定的
B.当r等于零时,万有引力为无穷大
C.两物体受到的引力总是大小相等,与两物体质量是否相等无关
D.r是两物体间最近的距离
C[引力常量G的值是卡文迪许在实验室里用实验测定的,而不是人为规定的,故A错误;当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用,故B错误;力是物体间的相互作用,万有引力同样适用于牛顿第三定律,即两物体受到的引力总是大小相等,与两物体质量是否相等无关,故C正确;r是两质点间的距离,质量分布均匀的球体可视为质点,此时r是两球心间的距离,故D错误.]
5.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕.“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的,该中心恒星与太阳的质量比约为()
A.B.1
C.5D.10
B[根据万有引力提供向心力,有G=mr,可得M=,所以恒星质量与太阳质量之比为==3×2≈1,故选项B正确.]
考点三|宇宙航行、经典力学的局限性
1.卫星的各物理量随轨道半径变化的规律2.三个宇宙速度
(1)第一宇宙速度
v1=7.9km/s,卫星在地球表面附近绕地球做匀速圆周运动的速度,又称环绕速度.
(2)第二宇宙速度
v2=11.2km/s,使卫星挣脱地球引力束缚的最小地面发射速度,又称脱离速度.
(3)第三宇宙速度
v3=16.7km/s,使卫星挣脱太阳引力束缚的最小地面发射速度,也叫逃逸速度.
3.第一宇宙速度的推导
方法一:由G=m得v1==7.9×103m/s.
方法二:由mg=m得
v1==7.9×103m/s.
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2π=5075s≈85min.
4.宇宙速度与运动轨迹的关系
(1)v发=7.9km/s时,卫星绕地球做匀速圆周运动.
(2)7.9km/sR,所以v7.9km/s,C正确.]
2.关于地球的第一宇宙速度,下列表述正确的是()
A.第一宇宙速度又叫环绕速度
B.第一宇宙速度又叫脱离速度
C.第一宇宙速度跟地球的质量无关
D.第一宇宙速度跟地球的半径无关
A[第一宇宙速度又叫环绕速度,故A正确,B错误;根据定义有G=m,得v=,其中,M为地球质量,R为地球半径,故C、D错误.]
3.某行星有甲、乙两颗卫星,它们的轨道均为圆形,甲的轨道半径为R1,乙的轨道半径为R2,R2R1.根据以上信息可知()
A.甲的质量大于乙的质量
B.甲的周期大于乙的周期
C.甲的速率大于乙的速率
D.甲所受行星的引力大于乙所受行星的引力
C[轨道半径越小,向心加速度、线速度、角速度越大,周期越小,B错,C对;卫星质量不能比较,A错;因为两卫星质量不知道,万有引力也不能比较,D错.]
4.我国成功发射的“神舟”号载人宇宙飞船和人造地球同步通信卫星都绕地球做匀速圆周运动,已知飞船的轨道半径小于同步卫星的轨道半径。则可判定()
A.飞船的运行周期小于同步卫星的运行周期
B.飞船的线速度小于同步卫星的线速度
C.飞船的角速度小于同步卫星的角速度
D.飞船的向心加速度小于同步卫星的向心加速度
A[该卫星的质量为m,轨道半径为r,周期T,线速度为v,角速度为ω,向心加速度为an,地球的质量为M,由万有引力定律得G=m=m=mω2r=man,故T=2π,v=,ω=,an=,因为飞船的轨道半径小于同步卫星的轨道半径,所以飞船的运行周期小于同步卫星的运行周期,飞船的线速度大于同步卫星的线速度,飞船的角速度大于同步卫星的角速度,飞船的向心加速度大于同步卫星的向心加速度,选项A正确,B、C、D错误.]
5.如图444所示,a、b、c三颗卫星在各自的轨道上运行,轨道半径rambmc
D.三个卫星的运行周期为Ta
一名优秀的教师就要对每一课堂负责,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师营造一个良好的教学氛围。怎么才能让高中教案写的更加全面呢?以下是小编为大家精心整理的“万有引力定律”,欢迎阅读,希望您能阅读并收藏。
第2节万有引力定律
【学习目标】
1.了解发现万有引力的思路和过程。
2.理解万有引力定律的内容及数学表达式,在简单情景中能计算万有引力。
3.了解卡文迪许测量万有引力常数的实验装置与设计思想。
4.认识发现万有引力定律的意义,领略天体运动规律。
【阅读指导】
1.牛顿在伽利略等人的研究成果的基础上,通过自己严密的论证后提出:万有引力是普遍存在于任何有______的物体之间的相互吸引力。于是推翻了宇宙的不可知论,同时使人们认识到天体的运动和地面上物体的运动遵循着同样的规律。
2.1687年(适值我国清朝康熙年间)牛顿正式发表了万有引力定律。定律的内容是:_____________________________________________________________________________________________________________________________________________________________。数学表达式为:___________________________。其中G称为__________,是个与_________无关的普适常量。
3.牛顿因为缺少精密测量仪器,没能测定引力常量G,在牛顿发表万有引力定律之后100多年,1798年(我国清朝嘉庆年间)英国物理学家___________做了一个精确的测量,其结果与现代更精密的测量结果很接近。目前我们通常认为G=_____________。
【课堂练习】
★夯实基础
1.关于万有引力定律的适用范围,下列说法中正确的是()
A.只适用于天体,不适用于地面物体
B.只适用于球形物体,不适用于其他形状的物体
C.只适用于质点,不适用于实际物体
D.适用于自然界中任意两个物体之间
2.在万有引力定律的公式中,r是()
A.对星球之间而言,是指运行轨道的平均半径
B.对地球表面的物体与地球而言,是指物体距离地面的高度
C.对两个均匀球而言,是指两个球心间的距离
D.对人造地球卫星而言,是指卫星到地球表面的高度
3.关于行星绕太阳运动的原因,有以下几种说法,正确的是()
A.由于行星做匀速圆周运动,故行星不受任何力作用
B.由于行星周围存在旋转的物质造成的
C.由于受到太阳的吸引造成的
D.除了受到太阳的吸引力,还必须受到其他力的作用
4.下面关于万有引力的说法中正确的是()
A.万有引力是普遍存在于宇宙中所有具有质量的物体之间的相互作用
B.重力和万有引力是两种不同性质的力
C.当两物体间有另一质量不可忽略的物体存在时,则这两个物体间的万有引力将增大
D.当两物体间距离为零时,万有引力将无穷大
5.苹果落向地球,而不是地球向上运动碰到苹果。下列论述中正确的是()
A.苹果质量小,对地球的引力较小,而地球质量大,对苹果的引力大
B.地球对苹果有引力,而苹果对地球没有引力
C.苹果对地球的作用力和地球对苹果作用力是相等的,由于地球质量极大,不可能产生明显的加速度
D.以上说法都不正确
6.地球质量大约是月球质量的81倍,一飞行器在地球和月球之间,当地球对它的引力和月球对它的引力相等时,此飞行器距地心距离与距月心距离之比为()
A.1:1B.3:1C.6:1D.9:1
★能力提升
7.已知地面的重力加速度是g,距地面高度等于地球半径2倍处的重力加速度为_____。
8.一物体在地球表面重16N,它在以5m/s2的加速度上升的火箭中的视重为9N,则此时火箭离地面的距离为地球半径的_________倍。
第2节万有引力定律
【阅读指导】
1.质量
2.任何两个物体之间都存在相互作用的引力。这个力的大小与这两个物体的质量的乘积成正比,与两物体之间的距离的平方成反比。万有引力常量物质种类
3.卡文迪许6.67×10-11m3/(kgs2)或6.67×10-11Nm2/kg2
【课堂练习】
1.B2.D3.C4.A5.C6.B7.1/98.3
【教学设计】
6.4万有引力理论的成就
一、教材分析
本节教学要求学生体会万有引力定律经受实践的检验,取得了很大的成功;理解万有引力理论的巨大作用和价值。通过本节的学习,使学生深刻体会科学定律对人类探索未知世界的作用,激起学生对科学探究的兴趣,培养热爱科学的情感。
二、教学目标
(一)知识与技能
1、了解万有引力定律在天文学上的重要应用。
2、会用万有引力定律计算天体质量。
3、理解并运用万有引力定律处理天体问题的思路和方法。
(二)过程与方法
1、通过万有引力定律推导出计算天体质量的公式。
2、了解天体中的知识。
(三)情感、态度与价值观
体会万有引力定律在人类认识自然界奥秘中的巨大作用,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点
三、教学重点、难点
1、行星绕太阳的运动的向心力是由万有引力提供的。
2、会用已知条件求中心天体的质量。
3、根据已有条件求中心天体的质量。
四、学情分析
万有引力定律的发现有着重要的物理意义:它对物理学、天文学的发展具有深远的影响;它把地面上物体运动的规律和天体运动的规律统一起来;对科学文化发展起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大信心,人们有能力理解天地间的各种事物。这节课我们就共同来学习万有引力定律在天文学上的应用。
五、教学方法
讨论、谈话、练习、多媒体课件辅助
六、课前准备
1.学生的学习准备:预习万有引力理论的成就
2.教师的教学准备:多媒体课件制作,课前预习学案。
七、课时安排:1课时
八、教学过程
一、“科学真实迷人”
教师活动:引导学生阅读教材“科学真实迷人”部分的内容,思考问题
1、推导出地球质量的表达式,说明卡文迪许为什么能把自己的实验说成是“称量地球的重量”?
【例题1】设地面附近的重力加速度g=9.8m/s2,地球半径R=6.4×106m,引力常量G=6.67×10-11Nm2/kg2,试估算地球的质量。
kg
二、计算天体的质量
教师活动:引导学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题1、应用万有引力定律求解天体质量的基本思路是什么?
2、求解天体质量的方程依据是什么?
学生活动:学生阅读课文第一部分,从课文中找出相应的答案.
1、应用万有引力定律求解天体质量的基本思路是:根据环绕天体的运动情况,求出其向心加速度,然后根据万有引力充当向心力,进而列方程求解.
2、从前面的学习知道,天体之间存在着相互作用的万有引力,而行星(或卫星)都在绕恒星(或行星)做近似圆周的运动,而物体做圆周运动时合力充当向心力,故对于天体所做的圆周运动的动力学方程只能是万有引力充当向心力,这也是求解中心天体质量时列方程的根源所在.
教师活动:请同学们结合课文知识以及前面所学匀速圆周运动的知识,加以讨论、综合,然后思考下列问题。学生代表发言。
1.天体实际做何运动?而我们通常可认为做什么运动?
2.描述匀速圆周运动的物理量有哪些?
3.根据环绕天体的运动情况求解其向心加速度有几种求法?
4.应用天体运动的动力学方程——万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?
5.应用此方法能否求出环绕天体的质量?
学生活动:分组讨论,得出答案。学生代表发言。
1.天体实际运动是沿椭圆轨道运动的,而我们通常情况下可以把它的运动近似处理为圆形轨道,即认为天体在做匀速圆周运动.
2.在研究匀速圆周运动时,为了描述其运动特征,我们引进了线速度v,角速度ω,周期T三个物理量.
3.根据环绕天体的运动状况,求解向心加速度有三种求法.即:
(1)a心=(2)a心=ω2r(3)a心=4π2r/T2
4.应用天体运动的动力学方程——万有引力充当向心力,结合圆周运动向心加速度的三种表述方式可得三种形式的方程,即
(1)F引=G=F心=ma心=m.即:G①
(2)F引=G=F心=ma心=mω2r即:G=mω2r②
(3)F引=G=F心=ma心=m即:G=m③
从上述动力学方程的三种表述中,可得到相应的天体质量的三种表达形式:
(1)M=v2r/G.(2)M=ω2r3/G.(3)M=4π2r3/GT2.
上述三种表达式分别对应在已知环绕天体的线速度v,角速度ω,周期T时求解中心天体质量的方法.以上各式中M表示中心天体质量,m表示环绕天体质量,r表示两天体间距离,G表示引力常量.
从上面的学习可知,在应用万有引力定律求解天体质量时,只能求解中心天体的质量,而不能求解环绕天体的质量。而在求解中心天体质量的三种表达式中,最常用的是已知周期求质量的方程。因为环绕天体运动的周期比较容易测量。
【例题2】把地球绕太阳公转看做是匀速圆周运动,平均半径为1.5×1011m,已知引力常量为:G=6.67×10-11Nm2/kg2,则可估算出太阳的质量大约是多少千克?(结果取一位有效数字)
分析:题干给出了轨道的半径,虽然没有给出地球运转的周期,但日常生活常识告诉我们:地球绕太阳一周为365天。
故:T=365×24×3600s=3.15×107s
由万有引力充当向心力可得:
G=m故:M=
代入数据解得M=kg=2×1030kg
教师活动:求解过程,点评。
三、发现未知天体
教师活动:请同学们阅读课文“发现未知天体”部分的内容,考虑以下问题
1、应用万有引力定律除可估算天体质量外,还可以在天文学上有何应用?
2、应用万有引力定律发现了哪些行星?
学生活动:阅读课文,从课文中找出相应的答案:
1、应用万有引力定律还可以用来发现未知的天体。
2、海王星、冥王星就是应用万有引力定律发现的。
教师活动:引导学生深入探究
人们是怎样应用万有引力定律来发现未知天体的?发表你的看法。
学生活动:讨论并发表见解。
人们在长期的观察中发现天王星的实际运动轨道与应用万有引力定律计算出的轨道总存在一定的偏差,所以怀疑在天王星周围还可能存在有行星,然后应用万有引力定律,结合对天王星的观测资料,便计算出了另一颗行星的轨道,进而在计算的位置观察新的行星。
教师点评:万有引力定律的发现,为天文学的发展起到了积极的作用,用它可以来计算天体的质量,同时还可以来发现未知天体.
【例题3】
【例题4】
【例题5】
四、当堂检测
九、板书设计
6.4万有引力理论的成就
一、科学真是迷人----【例题1】
二、计算天体的质量----【例题2】
三、发现未知天体
十、教学反思
本节要向学生澄清的一个问题是:天王星是太阳向外的第七颗行星,亮度是肉眼可见的,但由于较为黯淡而不易被观测者发现。威廉赫歇耳爵士在1781年3月13日宣布他的发现,这也是第一颗使用望远镜发现的行星。由于天王星的运动有某些不规则性,使得人们怀疑,在天王星之外还有一颗未知行星,英国的亚斯和法国的勒维列计算了这颗新星即将出现的时间和地点,德国科学家伽勒观测到了它,从而导致了海王星的发现。
十一、学案设计(见下页)
文章来源://m.jab88.com/j/73003.html
更多