北师大版实验教科书七年级下册
2.3平行线的性质(1)
教学目的
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
2.使学生了解平行线的性质和判定的区别.
重点难点
1.平行的三个性质,是本节的重点,也是本章的重点之一.
2.怎样区分性质和判定,是教学中的一个难点.
教学过程
一、引入
问:我们已经学习过平行线的哪些判定公理和定理?
学生齐答:
1.同位角相等,两直线平行.
2.内错角相等,两直线平行.
3.同旁内角互补,两直线平行.
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?
学生答:
1.两直线平行,同位角相等.
2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.
二、新课
平行线的性质一:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
怎样说明它的正确性呢?
方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.
方法二从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)
已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.
求证:∠1=∠2.
证明:(反证法)
假定∠1≠∠2,
则过∠1顶点O作直线A′B′使∠EOB′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.
∴∠1=∠2.
另证:(同一法)
过∠1顶点O作直线A′B′使∠E0B′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
∵AB∥CD(已知),且O点在AB上,O点在A′B′上,
∴A′B′与AB重合(平行公理)
∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.
已知:如图2-33,直线AB、CD被EF所截,AB∥CD,
求证:∠3=∠2.
证明:
∵AB∥CD(已知)
∴∠1=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠3=∠2(等量代换).
说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.
已知:如图2-34,直线AB、CD被EF所截,AB∥CD.
求证:∠2+∠4=180°.
证法一:
∵AB∥CD(已知),
∴∠1=∠2(两直线平行,同位角相等),
∵∠1+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
证法二:
∵AB∥CD(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵∠3+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).
解:∠B=180°-∠A=65°,
∠C=180°-∠D=80°.(根据平行线的性质三)
小结:平行线的性质与判定的区别:
1.从因果关系上看
性质:因为两条直线平行,所以……;
判定:因为……,所以两条直线平行.
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补:
判定:根据两角相等或互补,去证两条直线平行.
三、作业
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
教后记:.
学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。
第五章相交线与平行线
课题:5.1.1相交线课型:新授
学习目标:1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
学习重点:邻补角和对顶角的概念及对顶角相等的性质。
学习难点:在较复杂的图形中准确辨认对顶角和邻补角。
学具准备:剪刀、量角器
学习过程:
一、学前准备
1、预习疑难:。
2、填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。②同角或的补角。
二、探索与思考
(一)邻补角、对顶角
1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。
2、探索活动:
①任意画两条相交直线,在形成的四个角(∠1,∠2,∠3,∠4)中,两两相配共能组成对角。分别是。
②分别测量一下各个角的度数,是否发现规律?你能否把他们分类?完成教材中2页表格。
③再画两条相交直线比较。图1
3、归纳:邻补角、对顶角定义
邻补角。
两条直线相交所构成的四个角中,有公共顶点的两个角是
对顶角。
4、总结:①两条直线相交所构成的四个角中,邻补角有对。对顶角有对。
②对顶角形成的前提条件是两条直线相交。
5、对应练习:①下列各图中,哪个图有对顶角?
BBBA
CDCDCD
AA
BBB(A)
CDCACD
AD
(二)邻补角、对顶角的性质
1、邻补角的性质:邻补角。
注意:邻补角是互补的一种特殊的情况,数量上,位置上有一条。
2、对顶角的性质:完成推理过程
如图,∵∠1+∠2=,∠2+∠3=。(邻补角定义)
∴∠1=180°-,∠3=180°-(等式性质)
∴∠1=∠3(等量代换)
或者∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
由上面推理可知,对顶角的性质:对顶角。
三、应用
(一)例如图,已知直线a、b相交。∠1=40°,求∠2、∠3、∠4的度数
解:∠3=∠1=40°()。
∠2=180°-∠1=180°-40°=140°()。
∠4=∠2=140°()。
你还有别的思路吗?试着写出来
(二)练一练:教材3页练习(在书上完成)
(三)变式训练:把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.
变式1:把∠l=40°变为∠2-∠1=40°
变式2:把∠1=40°变为∠2是∠l的3倍
变式3:把∠1=40°变为∠1:∠2=2:9
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
(一)选择题:
1.如图所示,∠1和∠2是对顶角的图形有()
A.1个B.2个C.3个D.4个
2.如图1所示,三条直线AB,CD,EF相交于一点O,则∠AOE+∠DOB+∠COF等于()
A.150°B.180°C.210°D.120°
(1)(2)
3.下列说法正确的有()
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.
A.1个B.2个C.3个D.4个
4.如图2所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为()A.62°B.118°C.72°D.59°
(二)填空题:
1.如图3所示,AB与CD相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.
(3)(4)(5)
2.如图3所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.
3.如图4所示,直线AB,CD,EF相交于点O,则∠AOD的对顶角是_____,∠AOC的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.
4.如图5所示,直线AB,CD相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.
5、已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3=。
六、拓展延伸
1、如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.
三、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
四、自我检测:
(一)选择题:
1.如图1所示,下列说法不正确的是()
A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段
(1)(2)
2.如图1所示,能表示点到直线(线段)的距离的线段有()
A.2条B.3条C.4条D.5条
3.下列说法正确的有()
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个B.2个C.3个D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是()
A.大于acmB.小于bcm
C.大于acm或小于bcmD.大于bcm且小于acm
5.到直线L的距离等于2cm的点有()
A.0个B.1个;C.无数个D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为()
A.4cmB.2cm;C.小于2cmD.不大于2cm
(二)填空题:
1、如图4所示,直线AB与直线CD的位置关系是_______,记作_______,此时,∠AOD=∠_______=∠_______=∠_______=90°.
2、如图5,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC=6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD的距离是_____,A、B两点的距离是_________.
(4)(5)(6)(7)(8)
3、如图6,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短,因此线段AD的长是点A到BF的距离,对小明的说法,你认为_________________.
4、如图7,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.
5、如图8,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是_________.
五、拓展延伸
1、已知,如图,∠AOD为钝角,OC⊥OA,OB⊥OD
求证:∠AOB=∠COD
证明:∵OC⊥OA,OB⊥OD()
∴∠AOB+∠1=,
∠COD+∠1=90°(垂直的定义)
∴∠AOB=∠COD()
变式训练:如图OC⊥OA,OB⊥OD,O为垂足,若∠BOC=35°,则∠AOD=________.
2、已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD与OE的位置关系.
3、课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000,水渠大约要挖多长?
3.会根据几何语句画图,会用直尺和三角板画平行线;
4.了解在实践中总结出来的基本事实的作用和意义,并初步感受公理化思想。
学习重点:探索和掌握平行公理及其推论.
学习难点:对平行线本质属性的理解,用几何语言描述图形的性质
学具准备:分别将木条a、b与木条c钉在一起,做成学具,直尺,三角板
学习过程:
一、学前准备
1、预习疑难:。2、①两条直线相交有个交点。
②平面内两条直线的位置关系除相交外,还有哪些呢?
一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“探索平行线的性质”,仅供参考,欢迎大家阅读。
课题
第七章平面图形的认识(二)
课时分配
本课(章节)需课时
本节课为第课时
为本学期总第课时
7.2探索平行线的性质
教学目标
掌握平行线的性质。
运用平行线的性质及判定方法解决问题
重点
三条性质的推导
运用平行线的性质及判定方法解决问题
难点
运用平行线的性质及判定方法解决问题时的过程
教学方法
讲练结合、探索交流
课型
新授课
教具
投影仪
教师活动
学生活动
情景设置:
1在练习本上画两条平行线AB、CD,再画直线MN与直线AB、CD相交如图M
A31B
75
C42D
86
N
指出图中的同位角、内错角、同旁内角。
2将图剪成(1)(2)(3)(4)所示的四块。分别把图中的同位角、内错角重叠你会发现什么?
A31B(1)
A75B
C42D
(2)(3)
C86D
(4)
3将图(2)、(3)分别剪成两部分,并按图中所示拼在一起,你发现每对同旁内角有什么关系?
74
7
4
52
5
2
由上可知
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
新课讲解:
议一议
你能根据“两直线平行,内错角相等”,说明“两直线平行,内错角相等”成立的理由吗?C
1a
如图3
因为a∥b,2b
所以∠1=∠2,
又因为∠1与∠3是对顶角,∠1=∠3,所以∠2=∠3。
类似地,请根据“两直线平行,同位角相等”,说明“两直线平行,同旁内角互补”成立的理由,并与学生交流。
例题1:
如图,AD∥BC,∠A=∠C试说明AB∥DCADE
解:因为AD∥BC
所以∠C=∠CDE
又因为∠A=∠CFBC
所以∠A=∠CDE
根据“同位角相等,两直线平行:,
可以知道AB∥DC
练习:第14页练一练第1、2题
小结:内错角相等
平行同位角相等
同旁内角互补
教学素材:
A组题:
(1)在图中a∥b,计算∠1的度数分别为,,。
(2)如图若AB∥EF,BC∥DE,则∠E+∠B=
a36°AF
b111BC
120°DE
B组题:
(1)已知,如图,a∥b,c∥d,ab
∠1=48°,求∠2,∠3,14
∠4的度数。23
(2)如图,已知AB∥CD,∠B=120°,∠D=130°,求∠BDE的度数。
AB
F1E
2
CD
(2)
学生回答
由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.
学生板演
作业
第14页第1、2、3、4、题(5选做)
板书设计
复习例1板演
………………
………………
……例2……
………………
………………
教学后记
文章来源://m.jab88.com/j/41897.html
更多