88教案网

小学分数运算的教案

2025-09-01 小学分数运算的教案

小学分数运算的教案(推荐十三篇)。

作为一名人民教师,教案是教学的重要工具,有助于提高教学效率。如何撰写有效的教案呢?以下是针对小学分数运算的教案示例,供大家参考和分享。

小学分数运算的教案

● 小学分数运算的教案

教学目标

使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。

教学重难点

运算顺序,简便运算。

教学准备

教学过程设计

教学内容

师生活动

备注

一、复习引新

二、教学新课

三、

四、作业

1、说说下面各题的运算顺序。

8÷2+9÷318÷(12-3)

2、引入新课

1、教学例1

这道题要先算什么,再算什么?

上下练习。

引导观察计算过程,说明递等式书写的规范过程,并说明理由。

2、组织练习。

练一练1

说顺序后练习。

3、例2

说运算顺序,这里除法的'两步按照计算法则要怎样算?

观察转化成乘法后的算式,想一想,是不是可以简便运算?

上下用简便算法。

问:用了什么运算定律?

4、练习;

练一练2

这里除一个数要怎样算?

用简便算法。

说说各运用了什么运算定律,是怎样算的?

说说运算顺序,要注意什么?

练习111~3、4、5

课后感受

混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。

● 小学分数运算的教案

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教学过程:

一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)362+15(2)56+73(3)15(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1)+(2)-(3)-(4)+

2、复习整数乘法的运算定律

(1)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25740.36101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的.个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)出示:,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)出示:+,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为4和4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

(4)练习课

● 小学分数运算的教案

教学内容:

教科书第85页练习十五的第5—10题。

教学目标:

1、使学生进一步掌握分数加减混合运算。

2、使学生了解整数加法的运算律和减法的运算性质,同样适用于分数加减法,并能应用运算律或运算性质进行一些分数加减法的简便运算。

3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。

教学重点:

能正确应用运算律或运算性质进行一些分数加减法的简便算。

教学难点:

合理选择简便算法。

一、口算

练习十五第5题

集体口算后校对,并请做错学生说说错误原因。

二、用简便方法计算下面各题

(3/8+1/12)2/3—1/4—1/45/6+2/5+1/6+3/55/9+(4/5+4/9)

1、指出:整数加法运算律在分数中同样使用,整数减法运算性质在分数中也同样适用。

2、学生独立完成,六人板演。

3、交流计算方法、运用的知识与计算结果。

(1)加法结合律;

(2)加法交换律;

(3)减法运算性质;

(4)加法交换律和结合律。

三、解方程

1、指出:方程中的X不仅可以是整数或小数,也可以是分数。

2、学生独立完成,三人板演。

3、交流计算方法、运用的知识与计算结果,并请错误的学生说说错误原因。

四、解决实际问题

1、练习十五第10题

学生独立完成后,交流算式意义与结果,强调单位“1”。

2、改变习题:将“小华调查了全班同学在母亲节送给xx礼物”改成“小华调查了全班30位同学在母亲节送给xx礼物”。

(1)该怎样解决问题?

(2)为什么方法不变?

强调:这两题都只要把全班人数看作单位“1”,从单位“1”里去掉送鲜花的`1/3,再去掉送贺卡的1/4,剩下的就是送图画的人占全班人数的几分之几,所求问题与全班实际的总人数没有关系。

五、总结延伸

完成书上思考题。

1、计算后找出规律。

2、应用规律直接写得数。

3、应用规律自编加法算式。

● 小学分数运算的教案

教学目标

(1)掌握分数,小数加减混合运算的一般方法。

(2)能正确,合理地进行分数、小数加减混合运算,培养仔细观察,认真分析的习惯。

重点、难点:

正确,合理地进行分数、小数加减混合运算。

教学过程

备 注

一、复习铺垫

1、判断下列分数中哪些分数不能化成有限小数,把能化成有限小数的'分数化成有限小数。

1/83/44/57/259/122/3

1/68/157/167/3312/159/13

2、把下面各小数化成分数:

0.010.750.969.8

2.053.132.223.375

二、教学新知、揭示课题

1、出示课题《分数,小数加减混合运算》

2、出示例1。

计算1又3/4-.045+3又2/5

(1)尝试(用两种方法计算)

(2)投影片反馈

解法1:把小数化成分数计算

1又3/4-0.45+3又2/5

=1又3/4-9/20+3又2/5小数化分数

=1又15/20-9/20+3又8/20通分

=4又14/20计算

=4又7/10约分

解法2:把分数化成小数计算

1又3/4-0.45+3又2/5

=1.75-0.45+3.4分数化小数

=4.7

(3)讨论比较后教师。

A、进行分数、小数加减混合运算时,往往把分数化成小数或把小数化成分数计算。

B、在分数、小数加减混合运算中,当分数能化有限小数时,通常是:

教学过程

备 注

把分数化成小数计算比较方便。

(4)巩固

0.38+3.59-1又2/53又7/20-1又9/10+2.415

在分数、小数加减混合运算中,如果遇到分数不能化成有限小数时,又怎么办呢?

3、出示例2。

计算3又5/6+4.25-2又5/8

(1)审题:确定采用什么方法计算?

(2)试做。

(3)投影反馈。

小数化分数做:

3又5//6+4.25-2又5/8

=3又5/6+4又1/4-2又5/8

=3又20/24+4又6/24-2又15/24

=5又11/24

(4)讨论后:

分数、小数加减混合运算中,如果分数不能化有限小数时,要把小数化成分数计算。

(5)巩固练习

4.2+2又1/6-3.152又2/3-0.75+1又1/2

三、归纳

分数、小数加减混合运算,计算时要认真审题:根据题目中的具体情况,先判断把分数化成小数,还是把小数化成分数,如果分数能化成有限小数的,通常把分数化成小数计算比较简便,如果分数不能化有限小数的,可以把小数化成分数计算,这样才能使计算既正确有迅速。

四、综合练习

1、判断。

下列过题怎样计算正确又迅速:为什么?(化分数做还是化小数做)

0.2+1/4-0.39.8-1又5/16+1又7/24

3/7+0.25-2/312+4.375-6又5/12

2又4/5+78.02―70又3/85/6―0.42+1又1/4

2、练一练:

2又1/3-(0.75+7/10)

3、投影反馈

五、作业布置。《作业本》

学生都能掌握分数,小数加减混合运算的一般方法。但在实际计算练习中,正确,合理地进行分数、小数加减混合运算还有部分学生不够, 对学生出现的这种情况今后还要多提醒和训练。

● 小学分数运算的教案

教学内容:

教材第8页例6、例7,做一做1~2,练习一5~11。

教学目标:

1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。

2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。

3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

教学重点:

会计算分数混合运算,能利用乘法的运算定律进行简便运算。

教学难点:

根据题目特点,灵活地运用定律进行简便计算。

教具运用:

课件

教学过程:

一、复习导入。

1、提问:整数混全运算顺序是怎么样的?

预设:先算乘、除法,再算加、减法。

2、追问:遇到有括号的题该怎么来计算?

预设:有括号的.要先算小括号里面的,再算中括号里面的。

3、出示计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。

21×3+256×8-5×421×(36-14)

二、探索新知

1、向学生说明:分数混合运算的运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

13×35+11-57×2125学生独立完成,小组内订正。

2、分数混合运算

出示例题6:一个画框,长米,宽米,做这个画框要多长的木条?

3、学生读题,理解题意。已知长方形画框的长是45m,宽是12m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。

4、学生独立列式。

或启发自学,交流收获。

教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?

(1)请学生自学教材第9页的内容。

(2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。

5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?

(在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。在一个有括号的算式里,要先算括号里的运算,再算括号外的运算。)

6、分数乘法的简便计算。

(1)出示算式。

学生计算后,会发现每一行的两道算式结果相等,这时教师在每行的左右算式中间填上等号,并启发学生思考:每行两个算式的结果相等,这是数字的巧合呢?还是有一定的运算规律?

(2)指导观察,发现规律。

观察上面每组的两个算式,它们有什么关系?

引导学生通过观察比较,发现:第一组是两个因数交换了位置,运用了乘法交换律;第二组是三个数相乘,左边是先算前两个,右边是先算后两个,运用了乘法结合律;第三组算式符合乘法分配律,左边是两个数的和与一个数相乘,右边是这两个数分别与这个数相乘,然后再相加。

(3)总结规律。

在学生回答的基础上,引导学生得出结论:在分数乘法中,也能使用乘法交换律、结合律、分配律。整数乘法中的运算定律在分数乘法中同样适用。

7、应用规律进行简便计算。

(1)出示例题7

(2)让学生思考怎样计算比较简便,然后独立完成,如果遇到困难可以在小组里讨论交流。

交流时,让学生汇报自己的想法,分别说一说运用了哪种运算定律使计算简便。

三、巩固练习

1、教材第9页“做一做”第1题。让学生先观察算式分别有什么特点,思考应该如何计算才会比较简便。学生独立计算,并请个别学生上台板演,完成后集体讲评。

2、教材第9页“做一做”第2题。

四、课堂总结:

应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

● 小学分数运算的教案

教学目标:

1、使学生理解两个整数相除的商可以用分数来表示。

2、使学生掌握分数与除法的关系。

3、培养学生的应用意识。

教学重难点:

1、理解归纳分数与除法的关系。

2、用除法的意义理解分数的意义。

教学准备:

课件、圆片

教学过程:

一、复习引入

师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)

课件出示练习题:

(1)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?这道题把谁看作单位“1”?

(2)把9个香蕉平均分成3份,每份是这些香蕉的几分之几?每份有几个?

(3)把1包饼干平均分给2个人,每人分得(1/2)包。

引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)

二、探究新知

课件出示习题:

(1)把18个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

(2)把6个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成3份,求每份是多少。下面我们再来看一下这道题。

出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?

师:这道题该怎样列式呢?(学生列式,师板书:1÷3)

师:1÷3表示什么意思?

生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。

师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

生:1/3个。(师板书)

师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的1/3。

师:请大家看,每份都是1/3,每个人得到的是多少个蛋糕呢?

生:1/3个。

师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的蛋糕就是个。

教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3个。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

师:一个蛋糕平均分给3个人,我们知道了每人分得1/3个,现在要分一些其它的物品,你会吗?(课件出示例2)

指名读题

师:谁能列出算式?

生:3÷4(师板书)

师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的'。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

小组操作,教师巡视指导。

师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

(小组边汇报,边演示)

小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

师:你能用一个式子表示一下吗?

小组1:1÷4=1/4块。

师:好。请接着汇报吧。

小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)

师:还有没有和这组方法不同的?

小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

学生小组讨论

生:我们发现,被除数就是分子,除数就是分母。

师:你能试着表示出来吗?

生:被除数÷除数=被除数/除数(师板书)

师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

生1:a÷b=a/b(师板书)

生2:老师,我认为还要写上b≠0。

师:为什么b≠0?

生:因为b表示除数,除数不能为0。

生:分数的分母也不能等于0。

师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

学生观察算式,思考

生:可以。比如3/4=3÷4。

课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子。反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。

师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

请学生观察黑板算式,和同学讨论。

学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

三、巩固练习

1、用分数表示下列算式的商

7÷13=3÷11=8÷5=9÷16=m÷n=

2、试一试

()÷7=4/71÷()=1/37/9=()÷95/8=()÷()

3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

4、填空(练习十二3题)

5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

四、全课总结

● 小学分数运算的教案

教学目标

1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。

2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。

教学重点、难点

1、理解掌握分数与除法的关系。

2、会对假分数与带分数进行正确互化。

教学过程

活动一:创设情境,引导探索。

师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

师:同学们愿意帮xxx同学分一分蛋糕吗?

生:愿意!

师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?

师:这时,应该把什么看作单位“1”?

要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=

师:大家拿出练习本来计算这个商是多少?

生:3(1)

师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。

即:1÷3=3(1)(个)

答:每人分得3(1)个。

活动二:剪一间,拼一拼。

师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

生:想!

师:出示例2:把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]

②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份]

③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几?[课件显示拼好后的3/4个饼]

④列一列:怎样用算式表示分饼的数量关系?谁会列式?

⑤算一算:师指一名同学板演算式:3÷4=4(3)(张)

答:每人分得4(3)张。

观察刚才所得结果:

1÷3=3(1)3÷4=4(3)

讨论、感知关系

讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:

被除数÷除数=被除数/除数

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的`这种关系怎样表示?

学生回答,师板书:a÷b=a/b

师:大家考虑:这里的a和b是否可以是任何自然数?为什么?

生:不可以,因为这里的b≠0

师:左侧b≠0,那么右侧的b是否可以是0?为什么?

师:讨论完后,教师用红色粉笔标上:b≠0

活动三:总结提升,归纳关系。

1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

2、判断:“分数就是除法,除法就是分数”这句话对不对?

活动四:课堂检测(一)

1、填空:课本P39试一试1。

2、用分数表示下面各式的商。

1÷4=3÷4=8÷3=7÷3=

1÷7=13÷4=5÷2=4÷9=

活动五:假分数带分数互化。

师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?

生:小组讨论思考

师:以7/3为例讲解,课本P39T2、3

师生共同总结互化方法。

1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。

2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

活动六:课堂检测(二)

课本P40练一练的2、3。

课后作业

用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。

● 小学分数运算的教案

教学内容:

教材第27~28页的内容及练习。

教学目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

教学重难点:

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1.统一分数除法的计算法则。

2.指导完成P28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

2.布置预习: P29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

● 小学分数运算的教案

教学目标:

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:P28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、 ÷2= =,每份就是2个。

B、 ÷2= × =,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

● 小学分数运算的教案

教学内容:

教材第29~30页“分数除法(三)”。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

2.在解方程中,巩固分数除法的计算方法。

教学重难点:

1.能够体会方程是解决实际问题的重要模型。

2.能够用方程解决实际问题。

教学过程:

一、创设情景激趣揭题

1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

2.引入并板书课题。

二、扶放结合探究新知

1.根据这些数学信息,你能提出哪些数学问题?

2.引导学生逐一解答提出的问题。

3.重点引导:跳绳的有6人,是操场上参加总人数的.2/9,操场上有多少人?该怎样解答?

4.引导观察,找出有什么相同点和不同点?

三、反馈矫正落实双基

1.指导完成P29的试一试的1,2题。

2.你能根据方程

X×1/5=30

编一道应用题吗?

3.请你想一个问题情景,遍一道分数应用题。

四、小结评价布置预习

1.引导小结

通过本节课的学习你有哪些收获?

2.布置预习

整理前面所学知识。

板书设计:

分数除法(三)

跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

参加活动总人数×2/9=跳绳的人数

解:设操场有X人参加活动。

● 小学分数运算的教案

教学内容:

教材第25~26页的内容及练习。

教学目标:

1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能运用分数除以整数的计算方法解决实际问题。

教学重难点:

1.探索并理解分数除法的意义。jab88.CoM

2.探索并掌握分数除以整数的计算方法,能正确计算。

教学过程:

一、创设情景激趣揭题

1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。

2.引入并板书课题:分数除法(一)

二、扶放结合探究新知

1.提问:如果把这张纸的4/7平均分成2份,每份是多少?

2.把这张纸的4/7平均分成3份,又该怎样解决?

3.引导归纳分数除以整数的.意义及计算方法。

4.想一想;整数除法也有类似的规律吗?

5.填一填,验证猜想。

1÷4 1×1/4

7÷3 7×1/3

三、反馈矫正落实双基

1.出示26页试一试。

2.指导完成26页练一练的1~3题。

四、小结评价布置预习

1.引导小结

(1)这节课我们学习了什么知识?

(2)还有什么问题?

2.布置预习:27~28分数除法(二)

板书设计:

分数除法(一)

4/7÷2=4/7×1/2=2/7

4/7÷3=4/7×1/3=4/21

分数除以整数的意义,与整数除法的意义相同。

计算法则:分数除以整数(零除外),等于乘这个整数的倒数

● 小学分数运算的教案

单元目标:

1.理解并掌握分数除法的计算方法,会进行分数除法计算。

2.会解答已知一个数的几分之几是多少求这个数的实际问题。

3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4.能运用比的知识解决有关的实际问题。

单元重点:

理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

单元难点:

理解分数除法的算理,列方程解答分数除法问题

第一课时:分数除法的意义和分数除以整数

教学目标:

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:P28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、 ÷2= =,每份就是2个。

B、 ÷2= × =,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

第二课时:一个数除以分数

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求小时走了多少千米,也就是求2个,算式:2×

再求3个小时走了多少千米,算式:2× ×3

(5)综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算÷,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

第三课时:练习课

第四课时:分数混合运算

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

已知一个数的几分之几是多少求这个数的应用题

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解:35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

● 小学分数运算的教案

教学目标

1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位1,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位1

1.铅笔的支数是钢笔的 倍.

2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔.

4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位1?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

文章来源:https://m.jab88.com/j/233198.html

更多

猜你喜欢

更多

最新更新

更多