小学数学平均数的教学目标
2025-07-27 小学数学平均数的教学目标小学数学平均数的教学目标10篇。
作为一名无私奉献的教师,教学设计是系统规划教学的重要环节。编写小学数学平均数的教学目标时,应清晰明确,结合学生实际,注重知识传授与能力培养的结合,以激发学生的学习兴趣和探究精神。希望以上建议对您有所帮助!
小学数学平均数的教学目标 篇1
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的`能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备
多媒体课件
教学课时
1课时
教学过程
一、情境引入。
1、出示课件:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示课件:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
小学数学平均数的教学目标 篇2
一、导入新授:
通过师生谈话引出两个小组投球比赛成绩的数据。
二、新授:
1.出示投球记录:
第一组 第二组
姓名 投中个数
刘杰 9
杨立 8
孙梅 5
王丽 3
丁鹏 5
姓名 投中个数
张华 8
王云 7
李英 6
赵明 7
2.比较哪组的成绩好。
(1)让学生进行讨论,学生可能会说出不同的比较方法和想法,重点引导学生考虑怎样比较才是"公平"的。
(2)如果学生不能说出平均每人投中的个数,教师可以作为参与者提出并让学生讨论。
3.学生试做。
4.交流计算结果,并根据平均数比较两组的成绩,说明哪组的'成绩好。
第一组(8+7+6+7)÷4 第二组(9+8+5+3+5)÷5
= 28÷4 =30÷5
=7(个) =6(个)
7>6
答:第一组成绩好。
三、求平均数:
1.下表是亮亮家一周丢弃塑料袋的情况。
星期 一 二 三 四 五 六 日
个数 1 3 2 3 2 6 4
2.算一算:平均每天丢弃几个塑料袋?
(1)让学生观察统计表,说一说得到了哪些信息?
(2)自己试做。
(3)交流计算的方法和结果。
3.议一议:求出的"3个"是每天实际丢弃的塑料袋的个数吗?
四、做一做:
先让学生想一想,再动手操作。教师注意观察学生的方法。交流操作的过程,有意识的指几名学生说说是怎样想的、怎样做的。
小学数学平均数的教学目标 篇3
教学目标:
1. 通过具体情境使学生理解平均数的意义和作用,掌握计算平均数的方法,并能运用平均数解决实际问题。
2. 让学生体验数据的收集、整理与运用,学会利用数据来描述信息,进行合理推断,认识到数据的作用和统计对决策的重要影响。
3. 通过学习平均数,使学生初步认识到数学与日常生活的密切联系,理解数据可能引起的误导,从而培养尊重事实、以数据为依据的态度。
教学重点:
经历数据的收集、整理以及运用,理解加权平均数的意义和作用,并掌握计算加权平均数的方法。
教学难点:
利用数据进行信息描述与合理推断,理解数据可能带来的误导,从而培养尊重事实、以数据为依据的思维方式。
教学过程:
一、创设情境,引入课题。(5分钟左右)
1. 出示图片:我班同学在街上捡拾白色垃圾。
讨论:白色垃圾对我们的生活危害极大。展示相关数据。我校也要求学生调查自己家的情况。谁能说说你们家一周大约丢弃多少个塑料袋?
学生纷纷回答。(三个)
2. 最近看到一篇报道,某城市某校一个班平均每周丢弃塑料袋28个,多数用于购买食材及丢弃垃圾。谁能说说平均数是怎么计算的?
板书关系式:总数量 ÷ 总份数 = 平均数
3. 看到这个信息后你最想了解什么呢?(到底城镇的使用量大,还是我们农村的使用量大?)如果以我班作为农村调查对象。
4. 我们需要比较什么呢?这节课我们就来学习统计中的平均数。(板书)
二、通过活动,主动构建概念
那么我们班的同学平均每家一周丢弃多少个呢?为了得到平均数,仅知道几家的数据并不够,你们最想知道什么?
(一)活动1:初步估算平均数。(3分钟)
1. 展示数据,初步估算平均数。
学生看到分散且无规律的数据,犹豫不决,在教师的鼓励下,有的学生开始尝试猜测。然而数据不够统一。
2. “为什么不好估算?遇到什么困难了?” “怎样更容易进行估算呢?”两个问题的讨论引出了学生对数据整理的需求。
3. “如何进行整理?”这个问题引导学生观察数据的特征,最终得出在相同数据及其个数的基础上进行整理。
4. 小结:看来,平均数与每一个数据都有关系。这也是它能够广泛应用的原因,即用平均数描述现象更加全面。
三、在应用中巩固概念。
1. 展示要解决的问题(9分钟)
学校要对五年级四个班进行数学竞赛颁奖,选给谁呢?比较什么?1班34人,平均分87.7分;2班33人,平均分89.9分;3班,平均分90.5分;4班35人,平均分85.5分。本应给教这两个班的两位老师颁奖,颁给哪位老师呢?
学生进行交流,教师询问:哪个更科学公平呢?
2. 学生使用计算器计算两个班的平均数进行比较。
四、回顾总结(5分钟)
在统计中应用平均数来分析数据、说明问题是非常重要的手段。今天我们学习的统计中平均数与以往的平均数有什么相同点和不同点?
五、作业布置
板书设计:平均数
(5 + 4 + 7 + 5 + 9) ÷ 5 总数量 ÷ 总份数 = 平均数
= 30 ÷ 5
= 6(个)
答:这5次平均每次记住数字的个数为6个。
小学数学平均数的教学目标 篇4
教学目标:
1、使学生理解平均数的含义,知道平均数的求法。
2、了解平均数在统计学上的意义。
3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。
教学重点:
理解平均数的意义,掌握平均数的方法。
教学难点:
理解平均数的意义。
教、学具准备:
课件、题卡、磁扣等。
一、导入
同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。
二、讲授新知
1、探究平均数的方法
师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)
师:大家看,他们每人各运了几个球?
师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?
生:男生成绩好。女生总数12,男生总数15。
师:对,我们比较总数,可以看出男生队成绩更好。
师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。
生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)
生:4
师:用4表示可以吗?
生:可以。
师:男生队用几表示呢?
生:5
师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?
生:小组合作。
师:哪个小组愿意派代表汇报一下?(只出示女生的)
生:女生队2号最多,给1号2个,给3号1个。
师:结果怎样呢?
生:让他们变得同样多。
师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。
师:大家听清楚了吗?谁愿意到黑板上摆一摆?
生:移多补少演示。
师:大家同意吗?
师小结:在总数不变的前提下,我们把多的匀给少的`,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习平均数的知识。那么2、7、3这组数据的平均数就是4。
师:你们用移多补少的方法表示出男生队的平均成绩吗?
生:到前面来演示。
师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?
生:列算式。学生到黑板上演示。
(4+5+6)÷3
=15÷3
=5(个)
师:你是怎么想的?(写的同学说说自己的想法)
生:用男生队运球的总数除以3,就是每人平均运5个球。
师:听明白了吗?括号里的式子表示?除以三呢?结果5是?
师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。
师:你能用合并平分的方法,求出女生队的平均数吗?
生:汇报
师:现在我们来说一说哪一个队成绩更好呢?
生:男生队
师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。
2、平均数的作用
师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。
生:公平,再观察一下,他们为什么不同意。
不公平,人数不同。
师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?
生:4.
师:你们怎么这么快就知道了呢?
师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。
师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)
师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?
生:12个。
师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。
3、平均数的性质
师:请大家观察女生队的成绩
我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)
平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?
生:4比7少3个,比2多2个,比3多1个。
师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。
师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?
生:不是
师:平均数5和男生队每个人实际运球数比较一下。
生:平均数5和2号选手实际运球数一样多。
师:那么这个5和2号的成绩5表示的意义一样吗?
生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。
师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。
习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。
1、请你估一估小强拍球的平均成绩,可能是多少下?
2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。
师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。
师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?
生汇报:
师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:
1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。
2:计算统计平均数的作用,在于衡量事物要均等。
所以说平均数很重要,我们可以用平均数解决生活中的很多问题。
三、习题
1、课件出示“小小”冷饮店习题。
2、水深。
四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。
板书设计
平均数
合并平分移
小学数学平均数的教学目标 篇5
教学内容:《数学》三年级下册第58、59页
教学目标:
1.通过丰富的实例,经历进一步了解“平均数”意义的过程。
2.能够根据具体情境,利用“平均数”解决生活中的实际问题。
3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。
教学准备:CAI课件。
教学过程:
教学环节
设计意图
教学预设
一、情境创设:
同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?
去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片
二、探究与体验;
1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)
95分
95分
96分
85分
98分
93分
你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。
2.全班交流:
刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。
指名回答。
生评价谁算得对。
4.师小结过渡:
是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?
5.议一议:
师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:
第一次
第二次
第三次
第四次
第五次
167厘米
167厘米
167厘米
167厘米
167厘米
那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。
全班交流。
6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的'最后成绩,而不是用他几次试跳的平均成绩。
7.通过以上的学习你了解到了哪些知识?
三、实践与应用;
师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?
1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。
第(3)个问题请同学们同桌交流自己的看法,然后集体交流。
2.出示第2小题,生独立完成,然后集体订正.
3.出示第三小题,生独立完成第一步,然后集体订正。
第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。
四、拓展与延伸:
出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?
请同学认真思考,然后和同桌说说你的想法。
从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。
让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。
培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。
让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,
对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。
在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。
对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。
让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。
在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:
为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。
学生可能有以下几种答案
1.(96+95+95+96+85
+98+93)÷7=94(分)
想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。
(2)(96+95+95+96+93)÷5=95(分)
想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。
还有可能出现计算错误的现象,让学生找出错误原因。
学生可能出现的回答有;
1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。
2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。
第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。
答案应该是下周应准备和本周售出总数同样多的饮料最合适。
什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。
“平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。
小学数学平均数的教学目标 篇6
教学内容:
人教社义务教育教科书第六册第三单元。
设计思路:
本节课要通过一道道练习题的精心设计,来体现以下特点:
一、营造人文的课堂环境。
课堂教学只要以人为本,在整个教学环节中,本人充分尊重学生,给学生提供表现的机会,增强成功的体验,鼓励学生根据自己对平均数问题的理解进行阐释,使教学活动真正面向全体,使不同的学生得到不同的发展。另外,充分尊重学生独特的学习感受,不以教师权威压制学生的思维,而是积极引导学生多角度观察问题、思考问题,使学生敢想、敢说、敢质疑,做到课堂教学体现了尊重学生、理解学生、发展学生、激励学生,从而提高人的教育原则。
二、深刻的思维引领。
本人在练习课教学中呈现的练习题,只要针对学生在学习求平均数问题过程中极易出错的典型问题为着眼点,把学生学习中的“模糊点”,常犯错误有意识引进课堂。让学生的思维火花在探究交流中碰撞,使之明确错因,并主动纠错。然后,有针对性地让学生通过合理的习题进行深度挖掘,举一反三,对学生思维进行深刻、逆向性、批判性的指导和渗透。这样的课堂设计会因习题的多元化而倍显生动精彩,使学生感到一股浓浓的数学味,体验到思维的快感,抵制错源,享受课堂师生的平等交流的快乐,从而更加乐于学习数学。
教学目标:
1、进一步理解平均数的含义,掌握求平均数的方法。
2、通过解决生活实际问题,对学生进行节约资源和环保教育。
重点、难点:
进一步理解平均数的含义,掌握求平均数的方法,利用有关平均数的知识解决生活实际问题。
教学过程:
一、复习:
1、平均数的定义
2、求平均数的方法
二、课堂练习:
(一)基本训练
师:我们已经学会求平均数的方法,下面请同学们看一道习题。
1、判断:
⑴小华所在班级平均身高131厘米,小明所在班级平均身高135厘米,所以小华比小明矮。( )
⑵全体同学为希望工程捐款,平均每人捐款12元,李洁同学可能捐了15元( )
⑶小明语文、数学、英语三科的平均成绩是93分,小明的语文成绩是93分。( )
2、小丽家这一星期用塑料袋情况如下图:
看图填空:
⑴图中每格代表( );
⑵用塑料袋最少的是( );
⑶平均每天用塑料袋( );
⑷你的建议是( )。
3、以小组为单位(6人一组)统计你家上个月用水情况,制成统计图:
姓名合计
用水量
以小组为单位展示汇报后对学生进行节约用水教育。
(二)拓展训练:(课件出示)
1、一个小组有7个同学,他们的体重分别是:39千克、36千克,38千克、37千克、35千克、40千克、34千克。求这个小组的平均体重是多少千克?
2、商店买来5筐苹果,第一筐重38千克,第一筐重39千克,第一筐重43千克,第一筐重34千克,第一筐重36千克,求平均每筐重多少千克?
3、哪一组的成绩好?
4、选择题:想一想:下面哪个列式才对?
5、小丽期末考试中三门的平均成绩是96分,其中语文是89分,英语是100分,她的数学成绩是多少?
6、小华期末考试中四门的平均成绩是92分,其中语文是96分,科学和英语都是87分,他的数学考了多少分?
7、小芳有36本书,小丽有22本书。小芳送几本书给小丽,他们两人的书就同样多?
三、练习小结。
四、作业
1、复习课本第42、43页的内容。
2、做课本第45页的第5题。
3、收集资料:平均数在日常生活中有哪些应用及作用。
附板书设计:
求平均数的练习课
(一)平均数的定义: 几个不相等数-----→相等的数
(求平均数)
1、移多补少
2、计算方法:
(1)先求出总数----→ 把各个部分数加起来。
(2)再求平均数----→ 总数÷份数=平均数
(二)平均数问题的基本数量关系:
总数÷份数=平均数
平均数×份数=总数
总数÷平均数=份数
小学数学平均数的教学目标 篇7
一、说教材
1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》
2、教材分析:
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。
3、教学重、难点:求平均数说课稿
平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。
4、教学目标
在学生计算出平均数的.基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:
知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。
能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。
情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。
二、说教法:
“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、说学法:
在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。
四、说教学过程:
五年级下册数学平均数的再认识教学设计
教学内容 平均数的再认识
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备:多媒体
教学课时:1课时
教学过程
一、情境引入。
1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
小学数学平均数的教学目标 篇8
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2
二、教学准备
小黑板、姓名笔划数统计表。
三、教学目标:
1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。
2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。
3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。
(二)教学重点:理解平均数的意义和求平均数的方法。
(三)教学难点:理解平均数的意义。
四、教学过程:
(一)创设情境,激发兴趣
师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)
师:谁又能知道老师的姓名呢?
学生说一说后,出示一个姓名。
师:能完成这表格吗?(学生数一数,完成表格)
姓名 王 振 方
笔画数
师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)
师巡视指导,搜集、选择教学信息。学生完成后作简单交流。
(二)解决问题,探索新知
1、在解决问题中感知概念
师:请观察姓氏的笔画数,你能提出什么数学问题?引导到求笔画总数和平均数上。
2、在对话交流中明晰概念
师:王振方的姓名平均笔画数是6画,这又表示什么?
引导学生认识(1)表示三个字笔画数的平均水平。(2)表示王振方这个姓名笔画数的一般水平。
师:那这6画与王振方这三个字的笔画数之间还有关系吗?
(学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)
引导学生注意:(1)有关系的,是他们的中间数。(2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。(3)平均笔画数在笔画最多的数字与笔画最少的数字之间。(4)平均笔画数就在这三个字笔画数的中间位置。
师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把6叫做王振方姓名笔画数的——平均数。(板书课题)
师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)
师生交流计算的方法与结果。
3、在比较应用中深化概念
出示教师巡视时搜集的三个学生的姓名笔画数统计表。(有学生姓名两个字,有学生姓名三个字。)
师:比较他们姓名中每个字的笔画数,你有什么方法?
引导学生认识从(1)比笔画数的总数。(2)比平均笔画数。
- 88教案网小编精心推荐:
- 小学数学平均数的教学目标 | 小学数学平均数教案 | 小学平均数教案核心素养目标 | 平均数教学反思 | 平均数 | 平均数
(让学生先在小组内讨论,然后组织全班汇报交流。)
引导学生认识:(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。(2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。
学生运用平均数进行比较,然后组织交流。
师:比完后你有什么感想?(生回答略)
师:假如用这三个字姓名的笔画数与王振方的姓名笔画数相比,那又可以怎么比呢?
预设生:既可以用平均数来比,也可以用总数来比。
师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。
出示:(1)龙滚中心学校五年级平均每班有学生45人。
(2)四(1)班上学期期末考试数学平均分是72分。
师:你猜这些数据是怎么得来的,是什么意思,有什么用处?
(学生小组讨论,然后全班汇报交流。)
引导学生懂得:(1)45是五年级总人数除以班级数得来的,表示五年级每班人数的平均水平,不一定每班就是45人,但可以预测每班的大致人数。(2)72分是四(1)班上学期期末数学总分除以全班人数所得到的。
(三)尝试解题,自主归纳
师出示例题:
有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?
师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。
(学生小组合作,交流看法,教师参与讨论。)
学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。
(四)联系实际,应用新知
1、选择
(1)四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了( )棵
a、181 b、165 c、145
(2)自行车商店第一天卖出自行车54辆,第二天上午卖出25辆,下午卖出23辆,平均每天卖出多少辆?正确的列式是( )
a、(54+25+23)÷3 b、(54+25+23)÷2
2、李老师家今年1——3月用水吨数如下:
月份 1月 2月 3月
吨数 6 8 7
(1)从中你能知道什么?
(2)能否预测出今年全年的用水吨数?
(3)你还想对老师说什么?
(五)总结全课,布置作业
6、请结合教材内容或自主开发设计一节“实践与综合应用”活动课,并在所教班级实施。
小学数学平均数的教学目标 篇9
教学要求:
1、通过练习,进一步巩固求平均数的方法。
2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
教学重点:
解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
教具学具准备:
课件、统计。
教学过程:
一、理解平均数意义
“1”:说一说题目说的是一件什么事情?
平均水深140厘米是什么意思?是不是处处水深140厘米?
(不是,是有的地方比140厘米深,有的地方比140厘米浅)
“2”:自己看题,同桌讨论。
全班交流:
你认为哪些平均数是合理的,哪些是不合理的,为什么?
(1、3合理,2不合理)
二、求平均数的练习:
1、“3、4、6、7”题。
“3”:从表格里你了解到哪些信息?
独立解答(1)、(2),全班交流。
看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?
“4”:
(1)先算一算三年级平均每组植树的棵数。
假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?
假如是6棵呢?为什么?
看着这张统计图,你能不能给出平均数的范围?
(2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?
“6”:(1)同桌讨论,可以怎么估计?
介绍自己是怎么估计的。
(选取6个数据中处于较中间位置的`一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)
(2)你还能说出这个小组同学身高的哪些情况?
“7”:独立练习。
“你还发现什么?”尽量让学生从多角度说一说。
2、“5、8”题。
“8”:先说一说这一题的解决过程。
学生以小组为单位,调查、记录、解答问题。
“5”:课堂上老师指导说清要求,课后学生完成。
三、“你知道吗?”
举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?
学生计算:(47+78+80+81+82+82)÷6=75
去掉以后,是多少呢?
学生计算(78+80+81+82)÷4 约为80分
看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。
教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。
小学数学平均数的教学目标 篇10
一、教学目标:
1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。
2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。
3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。
二、教学重点:理解平均数的意义,学会计算简单数据的平均数。
三、教学难点:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。
四、教学过程:
1、创设情境,体验产生平均数的必要性。
同学们平时喜欢打球吗?前些天,二(3)班有5名男生,4名女生进行了一场激烈的投篮比赛。说到比赛,你们最想知道什么?
我们一起来看看比赛情况。
出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)
A、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。
学生讨论比总数——每队总人数不相同,不公平
比最多的——个人水平,不是整队水平
B、到底怎样比才公平地体现两队的实力(投球水平)呢?
(平均每人投中多少个球)——实际就是每队队员投球的平均数
揭题板书——认识平均数
2、认识平均数
刚才同学们经过讨论,一致认为算出每队队员的投球平均数,能帮我们评判输赢。那怎样才能求出两队投球的平均数呢?
A、同桌合作完成
a、利用手中的作业纸,不用箭头在图上移一移,也可以动笔算一算,求出两队的平均数。b、再比一比,哪队赢了?
B、反馈:哪队赢了?你是用什么方法研究出来的?
a、移一移,学生板演,其他生观察:在移的过程中,什么变了,什么没变?
每人投球个数变了
每队的总个数不变
(每队内部的个数调整,不影响整个队的实力)
像这种在总个数不变的情况下,把个数多的移给个数少的,使每人投球个数相同的方法叫:移多补少
刚才同学们用移多补少的方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。
还有别的方法吗?
C、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)
(1)、算式中的数都表示什么意思?
(2)、比较平均数,谁赢了?
比较两种方法,你喜欢哪一种?为什么?
小结:当数字比较小又接近的时候我们用移多补少更简便,
当数字比较大而复杂的时候我们用计算的方法更为简单。
3、理解平均数的意义
刚才在评判了两队的输赢碰到困难时,是谁帮助我们进行公正地评判的?那平均数到底是个怎样的数呢?想不想更进一步地了解它呢?
(1)、仔细观察女生队每人的.投球数,和平均数相比,你发现了什么?
有的比5大――可能相等或不相等
有的比5小――
(2)、同样都是“5”,它们所表示的意义相同吗?
是个体的投球水平
是整个队的总体投球水
4、其实,我们身边也有许多平均数,你能举个例子吗?
五、在具体情境中理解、应用平均数
1、是的,正是由于平均数能体现整体状况,在生活中的作用还不少呢。前不久,学校想了解三年级同学的身高状况,该怎么办?
昨天、我从咱们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。
(1)、出示身高计表
同学12345
身高cm
(2)、估计:他们的平均身高大约是多少?你是怎么估算的?
145cm、130cm可以吗?最小数
生:我的建议也是比较他们的总数?
生:我有不同意见,人数不同比总数不公平。
师:你很会观察统计表,而且说得很有道理,你们看人数不同比总数不公平。
师:那怎么比才公平呢?
生:减少1个人
生:我认为不好,他们班每3人一组,剩下1个人,这个人不管放在哪个组,都会有一个组是四个人的。我们不能忽视别人的劳动成果。
师:说得多好!你不但会分析问题而且很会做人!
师:人数不同,我们怎么比才公平呢?以四人小组讨论,看看哪一组能想出好办法。
【设计意图】:利用这班分组后多一人的人数冲突,产生人数不同如何比的问题,提升探究问题的`兴趣。
(学生小组活动,教师巡视,学生汇报)
生:我们讨论的结果是“平均分”,也就是求C组平均每个人捡得多少个和D组平均每个人捡得多少个。
师:那我们怎样平均分呢?
学生诉说小结:也就是使每组中的每个人捡得同样多。
学生用学具摆一摆也可以在纸上画一画,算一算来探究同样多的方法。
(学生用学具探究方法)
师:谁能把自己的想法和大家分享一下?(师结合学生的汇报,利用课件呈现移多补少的过程,)
师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。【板书】
师:谁来汇报 D组的呢。
师:你是用什么方法找出D组同样多的?
(生讲师再次呈现移多补少过程)
探讨不同的方法引出列式计算。
板书:C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4
=18÷3 =20÷4
=6(个) =5(个)
学生指着板书说说先合后分的方法。
师:你为什么C组除以3, D组除以4呢?
生:因为C组有3人而D组有4人。
归纳得出:总数量÷总份数
谈话:你给我们带来了求平均数的计算方法,同学们都给你掌声了呢,谢谢你!小结:无论是移多补少,还是先合后分,目的只有一个,就是把原来几个不同的数变得一样多。数学上我们把同样多的这个数叫做原来这几个数的平均数。(板书课题:平均数)
完善板书:总数量÷总份数=平均数
【设计意图】:由统计图显示出人数相同,收集个数不同;人数不相同,收集个数不相同两种情况,这样出现更为自然、合理、减缓了求平均数的坡度,强化了学生对平均数的意义和理解,体验到了实际问题的感受。问题的设计为学生的探究活动提供了导引,学生不仅学会了平均数的知识,更重要的是掌握了一种分析和解决问题的方法和策略,培养一种质疑反思的意识和习惯。
二、深入理解平均数的定义(意义)
师:C组的总数量是多少?总份数呢?平均数是?
师指着板书学生汇报,明确6是6、9、3这三个数的平均数,5是2、6、8、4这四个数的平均数。
仔细观察两条平均数的虚线,超于虚线的瓶子和不到虚线的瓶子,你发现了什么? (同桌交流)
生:超出平均数的部分和不到平均数的部分相同。
生:平均数比这里最大的数小一些,比最小的数大一些。
生:平均数是在这组数据的最大数和最小数之间。
师:还有发现吗?
生:C组的数据还有和平均数恰好一样的。
师:C组捡的平均数是6,这个6是谁捡得的个数?是洋洋捡得的个数吗?是花花捡的个数吗?还是晶晶捡的个数?
生:都不是。这6是C组平均每人捡得的个数,是3个数的平均数。
师:你分析得很有道理。
师:我们比较这两组的平均数,哪个组获星了?
生:A组获星了,
师:同学们,课下我们也可以加入他们班的活动,为了美丽广西实行“弯腰行动”吧
【设计意图】:要提升学生发现问题、分析问题、解决问题的能力,教师的问题设计很重要,在此,我组织学生从对统计图红色虚线观察比较,直观地看出超出平均数的部分和不到平均数的部分相同,进而加深理解移多补少来求平均数,感悟平均数的特点。
三、用一用,怎样理解生活中的平均数。
师:我们在分析刚才这些活动结果的时候用到了平均数,在日常的学习和生活中,大家还在哪里见到过平均数呢?(学生自由交流)
师:同学们都谈论得非常热烈,有平均成绩,平均速度,平均水深,平均年龄……
师:老师也带来一些素材:(课件出示)
小结:从这两个国家男女的平均身高可以看出哪个国家的人身高一些,因为平均数能代表一组数据的总体水平。下节课我们再进一步来研究这方面的知识。
过渡:平均数在我们的生活中有着广泛的应用,接下来我们就分析下面几个有关生活中的平均数吧!
【设计意图】:感受生活中平均数的意义,激发学生解决问题的兴趣。
(一)平均成绩
下表记录了三(2)班同学在大课间进行一分钟垫球比赛冠亚军成绩表,请你算一算谁是冠军
(学生独立填写表格,有的很快就算出了结果,有的还在笔算)
师:你为什么算得这么快?能把你的小窍门告诉大家吗?
生:我利用移多补少的方法从小明第二次移1给第三次,就得平均数99。
师: 你真是个机灵的孩子,我们用“移多补少”的方法看小亮的,是多少?(93)。
用列式计算的同学说说做这道题的体会从而总结出:数量少的容易看出平均数的就用“移多补少”的方法。数量比较多不容易看出的,再用先合后分的方法。
【设计意图】:此环节的练习帮助学生巩固本节课的知识,从中发现优化平均数的方法,提高思维敏捷性。
(二)歌咏比赛平均分
出示
要求算出1号选手的实得分
师:打分最高的是多少分?最低分呢?不计算,你能估计一下1号选手平均得分在什么范围之内吗?猜猜1号选手平均得分是多少?
学生的答案在82到97之间
猜完列式验证自己的答案。
(出示评分规则:去掉一个最高分和一个最低分来确定最后实得分。学生再算最后得分)
小结:平均数在具体的应用过程中还要根据具体的游戏规则,联系实际去思考来发挥它的作用的。我们学到众数,中位数时会进一步比较。
【设计意图】:此环节的练习让学生体会到平均数在实际应用过程中受到最大数和最小数的影响,为了公平起见,还要根据具体的游戏规则来算。从中也为日后学众数和中位数埋下伏笔。
(三)平均水深
老师这里有一道有趣的问题
一条河平均水深是100厘米,小明身高是140厘米,他想:在这条河里学游泳不会有危险。你同意他的观点吗?
生:小河平均水深是100厘米,如果深的地方超过140厘米,小明到河里游泳就会有危险。
(课件出示河的截面图)如果要在河边立一块警示牌,你会怎么写才能让人一眼看出危险性呢?(出示:最深处约250厘米)
出示最近溺水事故案例,希望同学们不要到河里去游泳,注意人生安全!
【设计意图】:平均水深这道题,用学生日常生活常识,知道一般河流水下深浅不一,利用出示截面图和建立警示牌起到警示作用,进而渗透安全教育。用典型的问题将学生的思维引向深处,在解决问题的过程中收获一种思维方式。
四、总结评价,感受成功。
提问:通过这节课的学习,你有哪些收获呢?
从学生回答小结出:平均数介于最大数和最小数之间,还学会了灵活应用两种求平均数的方法。
布置作业:利用今天所学的知识来解决课本P44练习十一的第1、第2题。
课堂赠语:只要同学们善于观察生活,就会发现生活中处处都有数学存在。
五、板书设计
平均数
①移多补少
②先合后分 总数量÷总份数=平均数
C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4
=18÷3 =20÷4
=6(个) =5(个)
- 88教案网小编为您推荐小学数学平均数的教学目标专题,欢迎访问:小学数学平均数的教学目标
文章来源:https://m.jab88.com/j/232621.html
更多