88教案网

2012届高三数学概率统计总复习

一名合格的教师要充分考虑学习的趣味性,作为教师就要好好准备好一份教案课件。教案可以让学生更好的消化课堂内容,帮助教师掌握上课时的教学节奏。您知道教案应该要怎么下笔吗?下面是小编为大家整理的“2012届高三数学概率统计总复习”,欢迎大家与身边的朋友分享吧!

高三特长班数学复习概率统计(一)
一、知识梳理
1.三种抽样方法的联系与区别:
类别共同点不同点相互联系适用范围
简单随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少
系统抽样将总体均匀分成若干部分;按事先确定的规则在各部分抽取在起始部分采用简单随机抽样总体中个体比较多
分层抽样将总体分成若干层,按个体个数的比例抽取在各层抽样时采用简单随机抽样或系统抽样总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4)要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距=频率②众数是最高矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为则方差,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率P=
特别提醒:古典概型的两个共同特点:
○1,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2,即每个基本事件出现的可能性相等。
4.几何概型的概率公式:P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为()
A.19、13B.13、19C.20、18D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是;
优秀率为。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.48.49.49.99.69.49.7
去掉一个最高分和一个最低分后,所剩数据的平均值
和方差分别为()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为()
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒
;第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒
的学生人数占全班总人数的百分比为,成绩大于等于15秒
且小于17秒的学生人数为,则从频率分布直方图中可分析
出和分别为()
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()
分数54321
人数2010303010

09、在区间上随机取一个数x,的值介于0到之间的概率为().
08、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.

相关知识

2012届高三特长班数学复数总复习


古人云,工欲善其事,必先利其器。作为高中教师就要精心准备好合适的教案。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的高中教师教学。那么一篇好的高中教案要怎么才能写好呢?小编收集并整理了“2012届高三特长班数学复数总复习”,供大家参考,希望能帮助到有需要的朋友。

高三特长班数学总复习——复数
一、知识梳理:
1、复数定义:,其中i满足。
2、复数a+bi(a,b∈R)与复平面内的点P一一对应,记向量是一一对应的.与虚轴上的点对应,与实轴上的点对应,复数对应的点到原点的距离叫做。
3、复数z=a+bi(a,b∈R)的共轭复数:
4、熟练记忆掌握运用以下结论:
(1)复数相等的充要条件:a+bi=c+di等价于。
(2)复数z=a+bi(a,b∈R)是实数的充要条件:,是纯虚数的充要条件:,是虚数的充要条件:,是零的充要条件:。
(3)复数z=a+bi(a,b∈R)的模记作。
5、复数运算:(1)复数加法:(a+bi)+(c+di)=
(2)复数减法:(a+bi)-(c+di)=
(3)乘法:(a+bi)(c+di)=
(a+bi)(a-bi)=(a+bi)2=(a-bi)2=
(4)除法:
牛刀小试:(6-5i)+(3+2i)(6-5i)-(3+2i)(6-5i)(3+2i)
二、高考链接
1、复数的实部是()A.-2B.2C.3D.4
2、设的共轭复数是,若,,则等于()
A.B.C.D.
3、复数等于()..
A.B.C.D.
4、已知(a,b∈R),其中i为虚数单位,则a+b=()
(A)-1(B)1(C)2(D)3
三、抢分演练:
1、下列n的取值中,使=1(i是虚数单位)的是()
A.n=2B.n=3C.n=4D.n=5
2、在复平面内,复数对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限.
3.若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()
A.EB.FC.GD.H
4、若复数为纯虚数,则实数的值为
A.B.C.D.或.
5、设(是虚数单位),则()
A.B.C.D.
6、i是虚数单位,i(1+i)等于()
A.1+iB.-1-iC.1-iD.-1+i
7、复数()
A.2B.-2C.D.
8、已知复数,那么=()
(A)(B)(C)(D)
9、是虚数单位,()
A、B、C、D、
10、已知是实数,是纯虚数,则=()
(A)1(B)-1(C)(D)-

11、i是虚数单位,若,则乘积的值是()()
(A)-15(B)-3(C)3(D)15
12、复数的实部是。
13、若复数z满足z(1+i)=1-i(I是虚数单位),则其共轭复数=__________________.

高三数学教案:《概率统计复习》教学设计


俗话说,磨刀不误砍柴工。准备好一份优秀的教案往往是必不可少的。教案可以让学生能够听懂教师所讲的内容,帮助高中教师更好的完成实现教学目标。那么如何写好我们的高中教案呢?以下是小编为大家收集的“高三数学教案:《概率统计复习》教学设计”希望对您的工作和生活有所帮助。

本文题目:高三数学复习教案:概率统计复习

一、 知识梳理

1.三种抽样方法的联系与区别:

类别 共同点 不同点 相互联系 适用范围

简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少

系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多

分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4) 要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是最高矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=

特别提醒:古典概型的两个共同特点:

○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2 ,即每个基本事件出现的可能性相等。

4. 几何概型的概率公式: P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是 ;

优秀率为 。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一个最高分和一个最低分后,所剩数据的平均值

和方差分别为( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒

; 第六组,成绩大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成绩小于17秒

的学生人数占全班总人数的百分比为 ,成绩大于等于15秒

且小于17秒的学生人数为 ,则从频率分布直方图中可分析

出 和 分别为( )

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

分数 5 4 3 2 1

人数 20 10 30 30 10

09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).

08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.

2012届高考文科数学第二轮概率统计复习教案


一名优秀的教师就要对每一课堂负责,高中教师要准备好教案,这是高中教师的任务之一。教案可以让上课时的教学氛围非常活跃,让高中教师能够快速的解决各种教学问题。那么怎么才能写出优秀的高中教案呢?下面是小编精心为您整理的“2012届高考文科数学第二轮概率统计复习教案”,仅供参考,欢迎大家阅读。

2012届高考数学二轮复习
专题八概率统计

【重点知识回顾】

二、重点知识回顾
概率
(1)事件与基本事件:
基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.
(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化.
(3)互斥事件与对立事件:
事件定义集合角度理解关系
互斥事件事件与不可能同时发生两事件交集为空事件与对立,则与必为互斥事件;
事件与互斥,但不一是对立事件
对立事件事件与不可能同时发生,且必有一个发生两事件互补
(4)古典概型与几何概型:
古典概型:具有“等可能发生的有限个基本事件”的概率模型.
几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.
两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.
(5)古典概型与几何概型的概率计算公式:
古典概型的概率计算公式:.
几何概型的概率计算公式:.
两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.
(6)概率基本性质与公式
①事件的概率的范围为:.
②互斥事件与的概率加法公式:.
③对立事件与的概率加法公式:.
(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是pn(k)=Cpk(1―p)n―k.实际上,它就是二项式[(1―p)+p]n的展开式的第k+1项.
(8)独立重复试验与二项分布
①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;
②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为.此时称随机变量服从二项分布,记作,并称为成功概率.
统计
(1)三种抽样方法
①简单随机抽样
简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.
简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.
实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.
②系统抽样
系统抽样适用于总体中的个体数较多的情况.
系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.
系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔,当(N为总体中的个体数,n为样本容量)是整数时,;当不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,这时;第三步,在第一段用简单随机抽样确定起始个体编号,再按事先确定的规则抽取样本.通常是将加上间隔k得到第2个编号,将加上k,得到第3个编号,这样继续下去,直到获取整个样本.
③分层抽样
当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.
分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.
(2)用样本估计总体
样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.
①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.
②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.
③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为.有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.
(3)两个变量之间的关系
变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.
(4)求回归直线方程的步骤:
第一步:先把数据制成表,从表中计算出;
第二步:计算回归系数的a,b,公式为
第三步:写出回归直线方程.
(4)独立性检验
①列联表:列出的两个分类变量和,它们的取值分别为和的样本频数表称为列联表1
分类1
2
总计
1

总计

构造随机变量(其中)
得到的观察值常与以下几个临界值加以比较:
如果,就有的把握因为两分类变量和是有关系;
如果就有的把握因为两分类变量和是有关系;
如果就有的把握因为两分类变量和是有关系;
如果低于,就认为没有充分的证据说明变量和是有关系.
②三维柱形图:如果列联表1的三维柱形图如下图
由各小柱形表示的频数可见,对角线上的频数的积的差的绝对值
较大,说明两分类变量和是有关的,否则的话是无关的.
重点:一方面考察对角线频数之差,更重要的一方面是提供了构造随机变量进行独立性检验的思路方法。
③二维条形图(相应于上面的三维柱形图而画)
由深、浅染色的高可见两种情况下所占比例,由数据可知要比小得多,由于差距较大,因此,说明两分类变量和有关系的可能性较大,两个比值相差越大两分类变量和有关的可能性也越的.否则是无关系的.

重点:通过图形以及所占比例直观地粗略地观察是否有关,更重要的一方面是提供了构造随机变量进行独立性检验的思想方法。

④等高条形图(相应于上面的条形图而画)
由深、浅染色的高可见两种情况下的百分比;另一方面,数据
要比小得多,因此,说明两分类变量和有关系的可能性较大,
否则是无关系的.

重点:直观地看出在两类分类变量频数相等的情况下,各部分所占的比例情况,是在图2的基础上换一个角度来理解。
【典型例题】
考点:概率
【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。
【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。
(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。
例1、在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随意投一点,则落入E中的概率为。
解:如图:区域D表示边长为4的正方形ABCD的内部(含边界),区域E表示单位圆及其内部,因此。
答案
点评:本题考查几何概型,利用面积相比求概率。
例2某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后,车上的乘客人数及频率如下表:
人数0~67~1213~1819~2425~3031人以上
频率0.10.150.250.200.200.1
(I)从每个停靠点出发后,乘客人数不超过24人的概率约是多少?
(II)全线途经10个停靠点,若有2个以上(含2个)停靠点出发后,车上乘客人数超过18人的概率大于0.9,公交公司就要考虑在该线路增加一个班次,请问该线路需要增加班次吗?
解:(Ⅰ)每个停靠点出发后,乘客人数不超过24人的概率约为
0.1+0.15+0.25+0.2=0.7
0.(Ⅱ)从每个停靠点出发后,乘客人数超过18人的概率为0.20+0.20+0.1=0.5
1.途经10个停靠点,没有一个停靠点出发后,乘客人数超过18人的概率为
途经10个停靠点,只有一个停靠点出发后,乘客人数超过18人的概率
所以,途经10个停靠点,有2个以上(含2个)停靠点出发后,乘客人数超过18人的概率
P=1--C()(1-)9=1-=
∴该线路需要增加班次。
答:(Ⅰ)每个停靠点出发后,乘客人数不超过24人的概率约为0.7
(Ⅱ)该线路需要增加班次
考点四:统计
【内容解读】理解简单随机抽样、系统抽样、分层抽样的概念,了解它们各自的特点及步骤.会用三种抽样方法从总体中抽取样本.会用样本频率分布估计总体分布.会用样本数字特征估计总体数字特征.会利用散点图和线性回归方程,分析变量间的相关关系;掌握独立性检验的步骤与方法。
【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。
(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。
例3(1)(2009湖南卷文)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为.
答案120
解析设总体中的个体数为,则
(2)(2009四川卷文)设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.5980.6250.6280.5950.639
乙批次:0.6180.6130.5920.6220.620
根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是
A.甲批次的总体平均数与标准值更接近
B.乙批次的总体平均数与标准值更接近
C.两个批次总体平均数与标准值接近程度相同
D.两个批次总体平均数与标准值接近程度不能确定
答案A
解析甲批次的平均数为0.617,乙批次的平均数为0.613

例4下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生
产能耗Y(吨标准煤)的几组对照数据
3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,崩最小二乘法求出Y关于x的线性回归方程Y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:32.5+43+54+64.5=66.5)
解:(1)散点图略.
(2),,,
由所提供的公式可得,故所求线性回归方程为10分
(3)吨.
例5、为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列的前六项.
(Ⅰ)求等比数列的通项公式;
(Ⅱ)求等差数列的通项公式;
(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
解:由题意知:,
∵数列是等比数列,∴公比
∴.
∵=13,
∴,
∵数列是等差数列,∴设数列公差为,则得,
∴=87,
,,
=,
(或=)
答:估计该校新生近视率为91%.
例6、某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
昼夜温差x(°C)1011131286
就诊人数y(个)222529261612
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(5分)
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(6分)
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(3分)
(参考公式:)
解:(Ⅰ)设抽到相邻两个月的数据为事件A.因为从6组数据中选
取2组数据共有15种情况,每种情况都是等可能出现的
其中,抽到相邻两个月的数据的情况有5种
所以
(Ⅱ)由数据求得
由公式求得
再由
所以关于的线性回归方程为
(Ⅲ)当时,,;
同样,当时,,
所以,该小组所得线性回归方程是理想的.
模拟演练
3.已知事件“三位中国选手均进入亚运会体操决赛”,事件“三位中国选手均未进入亚运会体操决赛”,那么事件和是()
A.等可能性事件B.不互斥事件
C.互斥但不是对立事件D.对立事件
3.C提示:根据两事件不能同时发生,且当一个不发生时不一定发生另一个,因此两事件
是互斥但不是对立事件.
4.若对于变量与的组统计数据的回归模型中,相关指数,又知残差平方和为,那么的值为()。
A.B.C.D.
4.A提示:根据表示总偏差平方和,得.
5.①既然抛掷硬币出现正面的概率为0.5,那么连续两次
抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概
率为,那么买1000张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过让运
动员猜上抛均匀塑料圆板着地是正面还是反面来决定哪一方先发球,这样做不公平;④一个
骰子掷一次得到2的概率是,这说明一个骰子掷6次会出现一次2.其中不正确的说法是
()
A①②③④B①②④C③④D③
5.A提示:概率是一个随即性的规律,具有不确定性,因此①②④错误,而③抛掷均匀塑料
圆板出现正面与方面的概率相等,是公平的.因此均为不正确的说法.
6.若,则方程有实根的概率为()
A.B.C.D.
6.C提示:若方程有实根,则有.因为,根据几何概型“有实根的”概率为.
7.(专题七文科第7题)
8.下图是2010年渥太华冬奥会上,七位评委为某冰舞
运动员打出的分数的茎叶统计图,去掉一个最低分和一
个最高分后,所剩数据的平均数和方差分别为()
A.,B.,
C.,D.,
8.D提示:根据茎叶图,所剩数据为,因此,
.
9.某高校调查询问了56名男女大学生,在课余时间是否参加运动,得到下表所示的数据.
从表中数据分析,①有以上的把握认为性别与是否参加运动有关;
②在100个参加运动的大学生中有95个男生;
③认为性别与是否参加运动有关出错的可能性小于;
④在100个参加运动的大学生中有5个女生;其中正确命题的个数为().
A.1B.2C.3D.4
9.B提示:根据,因此有95%以上的把握认为二者有关系,出错的可能性小于5%.①③正确.
10.((专题七文科第10题))
11.2010年3月“十一届全国人大三次会议及十一届全国政协三次会议”在北京隆重召开,
针对中国的中学教育现状,现场的2500名人大代表对其进行了综合评分,得到如下“频率
分布直方图”(如图),试根据频率分布直方图,估计平均分为().
ABCD
11.B提示:找到每个矩形的中点和频率,从而利用平均数公式求解.要注意频率分布直方图中每个小矩形面积表示该段的频率.
12.(专题七文科第12题)
13.半径为10cm的圆周上有两只蚂蚁,它们分别从两个不同的点A、B出发,沿劣弧相向而行,速度分别为10mm/s与8mm/s,则这两只蚂蚁在5s内相遇的概率为.
13.提示:5s内两只蚂蚁相遇时所行走的最大距离为mm,而两只蚂蚁初始时的最大距离为半个圆周,即mm,所以这两只蚂蚁在5s内相遇的概率为.
14.((专题七文科第14题))
15.已知现有编号为①②③④⑤的5个图形,它们分别是两个直角边长为3、3的直角三角形;两个边长为3的正方形;一个半径为3的圆.则以这些图形中的三个图形为一个立体图形的三视图的概率为.
15.提示:①②③;②③④;③④⑤可构成一个立体图形的三视图,而从这5个图形选取3个共有个基本事件,因此概率为.
16.随着经济的发展,电脑进入了越来越多的家庭,为了解电脑对生活的影响,就平均每天看电脑的时间,一个社会调查机构对某地居民调查了10000人,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10000人中再用分层柚样方法抽出100人做进一步调查,则在(小时)时间段内应抽出的人数是.
16.提示:根据频率分布直方图可得,在之间的人数为,根据分层抽样特点得在之间抽取的人数为.
17.输血是重要的抢救生命的措施之一,但是要注意同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.
黄种人群中各种血型的人所占的比如下表所示:
血型ABABO
该血型的人所占比/%2829835
2010年4月14日玉树地震,小王不幸被建筑物压在下面,失血过多,需要输血,已知小王是B型血,问:
(1)任找一个人,其血可以输给小王的概率是多少?
(2)任找一个人,其血不能输给小王的概率是多少?
17.提示:(1)对任一人,其血型为A,B,AB,O型血的事件分别记为它们是互斥的.
由已知,有.…………3分
因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件.
根据互斥事件的加法公式,有……6分.
(2)由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件
,且.…………10分
答:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.
………12分
18.某研究机构为了研究人的体重与身高之间的关系,随机抽测了20人,得到如下数据:
序号12345678910
身高x(厘米)182164170176177159171166182166
体重y(公斤)76606176775862607857
序号11121314151617181920
身高x(厘米)169178167174168179165170162170
体重y(公斤)76746877637859756473
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“体重大于75(公斤)”的为“胖子”,“体重小于等于75(公斤)”的为“非胖子”.请根据上表数据完成下面的联列表:
高个非高个合计
胖子
非胖子12
合计20
(2)根据题(1)中表格的数据,若按99%的可靠性要求,能否认为体重与身高之间有关系?
18.解:(1)
高个非高个合计
胖子527
非胖子11213
合计61420
………4分
(2)假设两变量没有关系,依题题意
………8分
由表知:认为体重与身高之间有关的可能性为………10分
所以有理由认为体重与身高之间有关系.………12分
19.为从甲乙两运动员中选拔一人,参加2010年广州亚运会体操项目,对甲、乙两运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如下:
(1)现要从中选拔一人参加亚运会,从平均成绩及发挥稳定性的角度考虑,你认为选派哪位学生参加合适?
(2)从甲运动员预赛成绩中任取一次记为,从乙运动员预赛成绩中任取一次记为,求
的概率.
解:根据茎叶图,可得甲乙成绩如下:
甲817978959384
乙929580758385
…………1分
(1)派甲参赛比较合适.理由如下:…………2分

,…………3分

…………5分
∵,,∴甲的成绩较稳定,派甲参赛比较合适.…………6分
(2)记“甲运动员预赛成绩,大于乙运动员预赛成绩”为事件A,…………7分
列表:
甲乙929580758385
8181,9281,9581,8081,7581,8381,85
7979,9279,9579,8079,7579,8379,85
7878,9278,9578,8078,7578,8378,85
9595,9295,9595,8095,7595,8395,85
9393,9293,9593,8093,7593,8393,85
8484,9284,9584,8084,7584,8384,85
因此基本事件共有36个,其中发生事件A的有17个,…………9分
根据古典概型,.…………10分
答:选择甲参加比赛更合适,的概率为.………………………………………12分
20.设,在线段上任取两点(端点除外),将线段分成了三条线段,
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.
解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:
共3种情况,其中只有三条线段为时能构成三角形,则构成三角形的概率.………6分
(2)设其中两条线段长度分别为,则第三条线段长度为,则全部结果所构成的区域为:
,,,
即:,,
所表示的平面区域为三角形;………8分
若三条线段能构成三角形,则还要满足,即为,所表示的平面区域为三角形………10分
由几何概型知,所求的概率为.………12分
21.下表抄录了2010年1至4月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期1月10日2月10日3月10日4月10日
昼夜温差x(°C)1113128
就诊人数y(个)25292616
(1)已知两变量、具有线性相关关系,求出关于的线性回归方程;
(2)通过相关指数判断回归方程拟合效果.
解:(1)制表如下
1234合计
111312844
2529261696
2753773121281092
12116914464498
6258416762562398
;;

………4分
根据两变量、具有线性相关关系
由公式求得………6分
再由
所以关于的线性回归方程为………8分
(2)∵
………10分
∴因此拟合效果比较好.
………12分
22.为选拔学生做亚运会志愿者,对某班50名学生进行了一次体育测试,成绩全部介于50与100之间,将测试结果按如下方式分成五组:每一组,第二组,……,第五组.下图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(II)从测试成绩在内的所有学生中随机抽取两名同学,设其测试成绩分别为、,求事件“”的概率.
解:(I)由直方图知,成绩在内的人数为:
.
所以该班在这次数学测试中成绩合格的有29人.………4分
(II)由直方图知,成绩在的人数为,设为、,
成绩在的人数为,设为………6分
若时,只有1种情况,………7分
若时,有3种情况,………8分
若分别在和内时,有

xx
x
x

yy
y
y

共有6种情况.所以基本事件总数为10种,………12分
事件“”所包含的基本事件个数有6种
∴P()………14分

2012届高三理科数学圆锥曲线与方程总复习


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师能够井然有序的进行教学。关于好的高中教案要怎么样去写呢?为了让您在使用时更加简单方便,下面是小编整理的“2012届高三理科数学圆锥曲线与方程总复习”,仅供参考,大家一起来看看吧。

第九章圆锥曲线与方程

高考导航

考试要求重难点击命题展望
1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;
3.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质;
4.了解圆锥曲线的简单应用;
5.理解数形结合的思想;
6.了解方程的曲线与曲线的方程的对应关系.本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.
本章难点:1.对圆锥曲线的定义及性质的理解和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系.圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式出现,小题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.

知识网络

9.1椭圆

典例精析
题型一求椭圆的标准方程
【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和
253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.
【解析】由椭圆的定义知,2a=453+253=25,故a=5,
由勾股定理得,(453)2-(253)2=4c2,所以c2=53,b2=a2-c2=103,
故所求方程为x25+3y210=1或3x210+y25=1.
【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m>0,n>0且m≠n);
(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.
【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:
据此,可推断椭圆C1的方程为.
【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).
通过观察可知道点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.
显然半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点
A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.
方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.
不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,
则可知B(-2,0),C(0,6)不是抛物线上的点.
而D(2,-22),F(3,-23)正好符合.
又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时出现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.
题型二椭圆的几何性质的运用
【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.
【解析】(1)设椭圆的方程为x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n,在△F1PF2中,
由余弦定理可知4c2=m2+n2-2mncos60°,
因为m+n=2a,所以m2+n2=(m+n)2-2mn=4a2-2mn,
所以4c2=4a2-3mn,即3mn=4a2-4c2.
又mn≤(m+n2)2=a2(当且仅当m=n时取等号),
所以4a2-4c2≤3a2,所以c2a2≥14,
即e≥12,所以e的取值范围是[12,1).
(2)由(1)知mn=43b2,所以=12mnsin60°=33b2,
即△F1PF2的面积只与椭圆的短轴长有关.
【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|≤(|PF1|+|PF2|2)2,|PF1|≥a-c.
【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x+4)2+y2=14和圆
(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.
【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,
则|PQ|+|PR|≥(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.
所以|PQ|+|PR|的最小值为9.
题型三有关椭圆的综合问题
【例3】(2010全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.
【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,
又2|AB|=|AF2|+|BF2|,得|AB|=43a.
l的方程为y=x+c,其中c=a2-b2.
设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组
化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,
则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.
因为直线AB斜率为1,所以|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],
即43a=4ab2a2+b2,故a2=2b2,
所以E的离心率e=ca=a2-b2a=22.
(2)设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y0=x0+c=c3.
由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.
从而a=32,b=3,故E的方程为x218+y29=1.
【变式训练3】已知椭圆x2a2+y2b2=1(a>b>0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2|=e,则e的值是()
A.32B.33C.22D.63
【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=
-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.
总结提高
1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠n)求解.
2.充分利用定义解题,一方面,会根据定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行计算推理.
3.焦点三角形包含着很多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范围.
9.2双曲线

典例精析
题型一双曲线的定义与标准方程
【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:(x-4)2+y2=2内切,求动圆圆心E的轨迹方程.
【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,
所以|AE|-|BE|=22,又A(-4,0),B(4,0),所以|AB|=8,22<|AB|.
根据双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.
因为a=2,c=4,所以b2=c2-a2=14,
故点E的轨迹方程是x22-y214=1(x≥2).
【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要特别注意轨迹是否为双曲线的两支.
【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和
(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()
A.6B.7C.8D.9
【解析】选D.
题型二双曲线几何性质的运用
【例2】双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范围.
【解析】设P(x,y),则由=0,得AP⊥PQ,则P在以AQ为直径的圆上,
即(x-3a2)2+y2=(a2)2,①
又P在双曲线上,得x2a2-y2b2=1,②
由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,
即[(a2+b2)x-(2a3-ab2)](x-a)=0,
当x=a时,P与A重合,不符合题意,舍去;
当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2>a,
化简得a2>2b2,即3a2>2c2,ca<62,
所以离心率的取值范围是(1,62).
【点拨】根据双曲线上的点的范围或者焦半径的最小值建立不等式,是求离心率的取值范围的常用方法.
【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()
A.k2-e2>1B.k2-e2<1
C.e2-k2>1D.e2-k2<1
【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba<k<ba,即k2<b2a2=c2-a2a2=e2-1,故选C.
题型三有关双曲线的综合问题
【例3】(2010广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.
(1)求直线A1P与A2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值.
【解析】(1)由题意知|x1|>2,A1(-2,0),A2(2,0),则有
直线A1P的方程为y=y1x1+2(x+2),①
直线A2Q的方程为y=-y1x1-2(x-2).②
方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2yx,③
则x≠0,|x|<2.
而点P(x1,y1)在双曲线x22-y2=1上,所以x212-y21=1.
将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x≠0且x≠±2.
方法二:设点M(x,y)是A1P与A2Q的交点,①×②得y2=-y21x21-2(x2-2).③
又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.
代入③式整理得x22+y2=1.
因为点P,Q是双曲线上的不同两点,所以它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2y-2=0.
解方程组得x=2,y=0.所以直线l与双曲线只有唯一交点A2.
故轨迹E不过点(0,1).同理轨迹E也不过点(0,-1).
综上分析,轨迹E的方程为x22+y2=1,x≠0且x≠±2.
(2)设过点H(0,h)的直线为y=kx+h(h>1),
联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.
令Δ=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,
解得k1=h2-12,k2=-h2-12.
由于l1⊥l2,则k1k2=-h2-12=-1,故h=3.
过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1⊥l2,因此A1H⊥A2H,由h2×(-h2)=-1,得h=2.
此时,l1,l2的方程分别为y=x+2与y=-x+2,
它们与轨迹E分别仅有一个交点(-23,223)与(23,223).
所以,符合条件的h的值为3或2.
【变式训练3】双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2等于()
A.1+22B.3+22
C.4-22D.5-22
【解析】本题考查双曲线定义的应用及基本量的求解.
据题意设|AF1|=x,则|AB|=x,|BF1|=2x.
由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a
(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.
故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.
又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,
两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.
总结提高
1.要与椭圆类比来理解、掌握双曲线的定义、标准方程和几何性质,但应特别注意不同点,如a,b,c的关系、渐近线等.
2.要深刻理解双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a<|F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当
||PF1|-|PF2||=2a>|F1F2|时,P无轨迹.
3.双曲线是具有渐近线的曲线,画双曲线草图时,一般先画出渐近线,要掌握以下两个问题:
(1)已知双曲线方程,求它的渐近线;
(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=±bax,可将双曲线方程设为x2a2-y2b2=λ(λ≠0),再利用其他条件确定λ的值,求法的实质是待定系数法.

9.3抛物线

典例精析
题型一抛物线定义的运用
【例1】根据下列条件,求抛物线的标准方程.
(1)抛物线过点P(2,-4);
(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.
【解析】(1)设方程为y2=mx或x2=ny.
将点P坐标代入得y2=8x或x2=-y.
(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p≠0),
由定义得5=|AF|=|m+p2|,又(-3)2=2pm,所以p=±1或±9,
所求方程为y2=±2x或y2=±18x.
【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0)(a>0)满足|PA|=d,试求d的最小值.
【解析】设P(x0,y0)(x0≥0),则y20=2x0,
所以d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.
因为a>0,x0≥0,
所以当0<a<1时,此时有x0=0,dmin=(1-a)2+2a-1=a;
当a≥1时,此时有x0=a-1,dmin=2a-1.
题型二直线与抛物线位置讨论
【例2】(2010湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.
【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:
(x-1)2+y2-x=1(x>0).
化简得y2=4x(x>0).
(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).
设l的方程为x=ty+m,由得y2-4ty-4m=0,
Δ=16(t2+m)>0,于是①
又=(x1-1,y1),=(x2-1,y2).
<0(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2<0.②
又x=y24,于是不等式②等价于y214y224+y1y2-(y214+y224)+1<0
(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+1<0.③
由①式,不等式③等价于m2-6m+1<4t2.④
对任意实数t,4t2的最小值为0,所以不等式④对于一切t成立等价于m2-6m+1<0,即3-22<m<3+22.
由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0,且m的取值范围是(3-22,3+22).
【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2=.
【解析】y2-4my+8m=0,
所以1y1+1y2=y1+y2y1y2=12.
题型三有关抛物线的综合问题
【例3】已知抛物线C:y=2x2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.
(1)求证:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.
【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),
把y=kx+2代入y=2x2,得2x2-kx-2=0,
由韦达定理得x1+x2=k2,x1x2=-1,
所以xN=xM=x1+x22=k4,所以点N的坐标为(k4,k28).
设抛物线在点N处的切线l的方程为y-k28=m(x-k4),
将y=2x2代入上式,得2x2-mx+mk4-k28=0,
因为直线l与抛物线C相切,
所以Δ=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,
所以m=k,即l∥AB.
(2)假设存在实数k,使=0,则NA⊥NB,
又因为M是AB的中点,所以|MN|=|AB|.
由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k24+2.
因为MN⊥x轴,所以|MN|=|yM-yN|=k24+2-k28=k2+168.
又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2
=1+k2(k2)2-4×(-1)=12k2+1k2+16.
所以k2+168=14k2+1k2+16,解得k=±2.
即存在k=±2,使=0.
【点拨】直线与抛物线的位置关系,一般要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须使用一般弦长公式.
【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.
【解析】455.
总结提高
1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.
2.掌握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.
3.抛物线的标准方程有四种形式,要掌握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采用待定系数法.
4.抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握.但由于抛物线的离心率为1,所以抛物线的焦点有很多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p>0)的焦点的直线交抛物线于A、B两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2psin2α(α为AB的倾斜角),y1y2=-p2,x1x2=p24等.

9.4直线与圆锥曲线的位置关系

典例精析
题型一直线与圆锥曲线交点问题
【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a的值.
【解析】联立方程组
(1)当a=0时,方程组恰有一组解为
(2)当a≠0时,消去x得a+1ay2-y-1=0,
①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,
方程组恰有一组解
②若a+1a≠0,即a≠-1,令Δ=0,即1+4(a+1)a=0,解得a=-45,这时直线与曲线相切,只有一个公共点.
综上所述,a=0或a=-1或a=-45.
【点拨】本题设计了一个思维“陷阱”,即审题中误认为a≠0,解答过程中的失误就是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,此时与已知直线y=x-1恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特征是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.
【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范围为()
A.{1,-1,52,-52}B.(-∞,-52]∪[52,+∞)
C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪[52,+∞)
【解析】由(1-k2)x2-2kx-5=0,
k=±52,结合直线过定点(0,-1),且渐近线斜率为±1,可知答案为A.
题型二直线与圆锥曲线的相交弦问题
【例2】(2010辽宁)设椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,=2.
(1)求椭圆C的离心率;
(2)如果|AB|=154,求椭圆C的方程.
【解析】设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0.
(1)直线l的方程为y=3(x-c),其中c=a2-b2.
联立
得(3a2+b2)y2+23b2cy-3b4=0.
解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.
因为=2,所以-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.
解得离心率e=ca=23.
(2)因为|AB|=1+13|y2-y1|,所以2343ab23a2+b2=154.
由ca=23得b=53a,所以54a=154,即a=3,b=5.
所以椭圆的方程为x29+y25=1.
【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.
【变式训练2】椭圆ax2+by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.
【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y1-y2)(y1+y2)=0
2ax0+2by0y1-y2x1-x2=0ax0-by0=0.
故ab=y0x0=32.
题型三对称问题
【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范围.
【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k≠0.
设直线AB的方程为y=-1kx+b,
联立消去x,得14ky2+y-b=0,
由题意有Δ=12+414kb>0,即bk+1>0.(*)
且y1+y2=-4k.又y1+y22=-1kx1+x22+b.所以x1+x22=k(2k+b).
故AB的中点为E(k(2k+b),-2k).
因为l过E,所以-2k=k2(2k+b)+3,即b=-2k-3k2-2k.
代入(*)式,得-2k-3k3-2+1>0k3+2k+3k3<0
k(k+1)(k2-k+3)<0-1<k<0,故k的取值范围为(-1,0).
【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;
(2)对于圆锥曲线上存在两点关于某一直线对称,求有关参数的范围问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范围.
【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()
A.3B.4C.32D.42
【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,
所以xA+xB=-1,故AB中点为(-12,-12+b).
它又在x+y=0上,所以b=1,所以|AB|=32,故选C.
总结提高
1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.
2.直线与圆锥曲线的位置关系的研究可以转化为相应方程组的解的讨论,即联立方程组
通过消去y(也可以消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a≠0两种情况,对双曲线和抛物线而言,一个公共点的情况除a≠0,Δ=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(此时直线与双曲线、抛物线属相交情况).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.
3.弦中点问题的处理既可以用判别式法,也可以用点差法;使用点差法时,要特别注意验证“相交”的情形.

9.5圆锥曲线综合问题

典例精析
题型一求轨迹方程
【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l2,记l1和l2交于点M.
(1)求证:l1⊥l2;
(2)求点M的轨迹方程.
【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.
联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y′=x.
所以过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2=x2.
因为k1k2=x1x2=-1,所以l1⊥l2.
(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).
同理直线l2的方程为y-x222=x2(x-x2).
联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),
整理得(x1-x2)(x-x1+x22)=0,
注意到x1≠x2,所以x=x1+x22.
此时y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.
由(1)知x1+x2=2k,所以x=x1+x22=k∈R.
所以点M的轨迹方程是y=-12.
【点拨】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念,“求轨迹”除了首先要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种基本曲线方程和它的形态的对应关系了如指掌.
【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()
A.x29-y216=1B.x216-y29=1
C.x29-y216=1(x>3)D.x216-y29=1(x>4)
【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,
所以|CA|-|CB|=8-2=6,
根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x>3),故选C.
题型二圆锥曲线的有关最值
【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.当∠ABC=60°时,求菱形ABCD面积的最大值.
【解析】因为四边形ABCD为菱形,所以AC⊥BD.
于是可设直线AC的方程为y=-x+n.
由得4x2-6nx+3n2-4=0.
因为A,C在椭圆上,所以Δ=-12n2+64>0,解得-433<n<433.
设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,
y1=-x1+n,y2=-x2+n.所以y1+y2=n2.
因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.
所以菱形ABCD的面积S=32|AC|2.
又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).
所以当n=0时,菱形ABCD的面积取得最大值43.
【点拨】建立“目标函数”,借助代数方法求最值,要特别注意自变量的取值范围.在考试中很多考生没有利用判别式求出n的取值范围,虽然也能得出答案,但是得分损失不少.
【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BP⊥PQ,则点Q横坐标的取值范围是.
【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),
由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.
所以xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.
因为|xP-1+1xP-1|≥2,所以xQ≥1或xQ≤-3.
题型三求参数的取值范围及最值的综合题
【例3】(2010浙江)已知m>1,直线l:x-my-m22=0,椭圆C:x2m2+y2=1,F1,F2分别为椭圆C的左、右焦点.
(1)当直线l过右焦点F2时,求直线l的方程;
(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
【解析】(1)因为直线l:x-my-m22=0经过F2(m2-1,0),
所以m2-1=m22,解得m2=2,
又因为m>1,所以m=2.
故直线l的方程为x-2y-1=0.
(2)A(x1,y1),B(x2,y2),
由消去x得2y2+my+m24-1=0,
则由Δ=m2-8(m24-1)=-m2+8>0知m2<8,
且有y1+y2=-m2,y1y2=m28-12.
由于F1(-c,0),F2(c,0),故O为F1F2的中点,
由=2,=2,得G(x13,y13),H(x23,y23),
|GH|2=(x1-x2)29+(y1-y2)29.
设M是GH的中点,则M(x1+x26,y1+y26),
由题意可知,2|MO|<|GH|,即4[(x1+x26)2+(y1+y26)2]<(x1-x2)29+(y1-y2)29,
即x1x2+y1y2<0.
而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).
所以m28-12<0,即m2<4.
又因为m>1且Δ>0,所以1<m<2.
所以m的取值范围是(1,2).
【点拨】本题主要考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.
【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△ABC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范围为.
【解析】设B(m,m2-1a),则C(m,-m2-1a)(m>1),
又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,
所以a=3m+1m-1=3(1+2m-1)>3,即a的取值范围为(3,+∞).
总结提高
1.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标法”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、待定系数法.
2.最值问题的代数解法,是从动态角度去研究解析几何中的数学问题的主要内容,其解法是设变量、建立目标函数、转化为求函数的最值.其中,自变量的取值范围由直线和圆锥曲线的位置关系(即判别式与0的关系)确定.
3.范围问题,主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.

文章来源:http://m.jab88.com/j/52128.html

更多

最新更新

更多