88教案网

高中数学必修四2.3.2平面向量的正交分解和坐标表示导学案

一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生更好地进入课堂环境中来,减轻高中教师们在教学时的教学压力。那么一篇好的高中教案要怎么才能写好呢?下面是小编为大家整理的“高中数学必修四2.3.2平面向量的正交分解和坐标表示导学案”,供大家借鉴和使用,希望大家分享!

2.3.2平面向量的正交分解和坐标表示
【学习目标】
1.了解平面向量基本定理;理解平面向量的坐标的概念;
2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
3.能够在具体问题中适当选取基底,使其他向量都能够用基底来表达.
【新知自学】
知识回顾:1.平面向量基本定理:如果,是同一平面内的两个向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2;
使得
给定基底,分解形式惟一.λ1,λ2由,,唯一确定.
2.向量的夹角:已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角,
当=,、同向;当=,、反向(同向、反向通称平行);
当=°,称与垂直,记作。
新知梳理:
由前面知识知道,平面中的任意一个向量都可以用给定的一组基底来表示;当然也可以用两个互相垂直的向量来表示,这样能给我们研究向量带来许多方便。
1.平面向量的正交分解:把向量分解为两个的向量。
思考:在平面直角坐标系中,每一个点都可以用一对有序实数表示,平面内的每一个向量,如何表示呢?
2.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得=x+y………○1
我们把叫做向量的(直角)坐标,记作=(x,y)………○2
其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示.与相等的向量的坐标也为.
特别地,=(1,0)=(0,1),=(0,0).
3.在平面直角坐标系中,一个平面向量和其坐标是一一对应的。
如图,在直角坐标平面内,以原点为起点作=,则点的位置由唯一确定.
设=x+y,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.
对点练习:
1.如图,向量、是两个互相垂直的单位向量,向量与的夹角是30°,且||=4,以向量、为基底,向量=_________

2.在平面直角坐标系下,起点是坐标原点,终点A落在直线上,且模长为1的向量的坐标是___________

【合作探究】
典例精析:
例1:请写出图中向量,,的坐标

变式1:请在平面直角坐标系中作出向量、,其中=(1,-3)、=(-3,-1).

例2:如图所示,用基底、分别表示向量、、、并求出它们的坐标。

变式2:已知O为坐标原点,点A在第一象限,,,求向量的坐标

【课堂小结】
向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义。
将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标。
【当堂达标】
1、已知力在水平方向与竖直方向的分力分别是4和3,则力的实际大小是__________,若水平方向为x轴的正方向,竖直方向为y轴的正方向,则力的坐标表示是______________

2、若,(,为单位向量),则的坐标(x,y)就是____的坐标,即若=(x,y),则点A的坐标就是_______________。

3、如右图:|OA|=4,B(1,2),求向量的坐标。

【课时作业】
1.设、是平面直角坐标系内分别与x轴、y轴方向相同的两个单位向量,且,,则△OAB的面积等于()
A、15B、10C、7.5D、5
2、在平面直角坐标系中,A(2,3),B(-3,4),如图所示,x轴,y轴上的两个单位向量分别是和,则下列说法正确的是__________
①2+3;②3+4;
③-5+;④5-.

3、如图所示的直角坐标系中,四边形OABC为等腰梯形,BC‖OA,OC=6,,则用坐标表示下列向量:_______________;
______________;______________;
______________;

4.在直角坐标系xoy中,向量的方向如图所示,且,分别写出他们的坐标。

5.如图,已知O为坐标原点,点A在第一象限,,,求向量的坐标。

【延伸探究】
在平面直角坐标系中,A(1,1),B(-2,4),则向量的坐标是_________

相关阅读

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算


2.3.22.3.3平面向量的正交分解及坐标表示
平面向量的坐标运算

预习课本P94~98,思考并完成以下问题
(1)怎样分解一个向量才为正交分解?
(2)如何由a,b的坐标求a+b,a-b,λa的坐标?
[新知初探]
1.平面向量正交分解的定义
把一个平面向量分解为两个互相垂直的向量.
2.平面向量的坐标表示
(1)基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.
(2)坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对(x,y)叫做向量a的坐标.
(3)坐标表示:a=(x,y).
(4)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
[点睛](1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.
(2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a=bx1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).
3.平面向量的坐标运算
设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:
文字描述符号表示
加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=(x1+x2,y1+y2)
减法两个向量差的坐标分别等于这两个向量相应坐标的差a-b=(x1-x2,y1-y2)
数乘实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa=(λx1,λy1)
重要结论一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标已知A(x1,y1),
B(x2,y2),则=(x2-x1,y2-y1)
[点睛](1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.
(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)相等向量的坐标相同与向量的起点、终点无关.()
(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.()
(3)两向量差的坐标与两向量的顺序无关.()
(4)点的坐标与向量的坐标相同.()
答案:(1)√(2)√(3)×(4)×
2.若a=(2,1),b=(1,0),则3a+2b的坐标是()
A.(5,3)B.(4,3)
C.(8,3)D.(0,-1)
答案:C
3.若向量=(1,2),=(3,4),则=()
A.(4,6)B.(-4,-6)
C.(-2,-2)D.(2,2)
答案:A
4.若点M(3,5),点N(2,1),用坐标表示向量=______.
答案:(-1,-4)

平面向量的坐标表示

[典例]
如图,在边长为1的正方形ABCD中,AB与x轴正半轴成30°角.求点B和点D的坐标和与的坐标.
[解]由题知B,D分别是30°,120°角的终边与单位圆的交点.
设B(x1,y1),D(x2,y2).
由三角函数的定义,得
x1=cos30°=32,y1=sin30°=12,∴B32,12.
x2=cos120°=-12,y2=sin120°=32,
∴D-12,32.
∴=32,12,=-12,32.

求点和向量坐标的常用方法
(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.
(2)在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.

[活学活用]
已知O是坐标原点,点A在第一象限,||=43,∠xOA=60°,
(1)求向量的坐标;
(2)若B(3,-1),求的坐标.
解:(1)设点A(x,y),则x=43cos60°=23,
y=43sin60°=6,即A(23,6),=(23,6).
(2)=(23,6)-(3,-1)=(3,7).
平面向量的坐标运算
[典例](1)已知三点A(2,-1),B(3,4),C(-2,0),则向量3+2=________,-2=________.
(2)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b的坐标.
[解析](1)∵A(2,-1),B(3,4),C(-2,0),
∴=(1,5),=(4,-1),=(-5,-4).
∴3+2=3(1,5)+2(4,-1)
=(3+8,15-2)
=(11,13).
-2=(-5,-4)-2(1,5)
=(-5-2,-4-10)
=(-7,-14).
[答案](11,13)(-7,-14)
(2)解:a+b=(-1,2)+(3,-5)=(2,-3),
a-b=(-1,2)-(3,-5)=(-4,7),
3a=3(-1,2)=(-3,6),
2a+3b=2(-1,2)+3(3,-5)
=(-2,4)+(9,-15)
=(7,-11).
平面向量坐标运算的技巧
(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.
(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.
(3)向量的线性坐标运算可完全类比数的运算进行.

[活学活用]
1.设平面向量a=(3,5),b=(-2,1),则a-2b=()
A.(7,3)B.(7,7)
C.(1,7)D.(1,3)
解析:选A∵2b=2(-2,1)=(-4,2),
∴a-2b=(3,5)-(-4,2)=(7,3).
2.已知M(3,-2),N(-5,-1),=12,则P点坐标为______.
解析:设P(x,y),=(x-3,y+2),=(-8,1),
∴=12=12(-8,1)=-4,12,
∴x-3=-4,y+2=12.∴x=-1,y=-32.
答案:-1,-32

向量坐标运算的综合应用
[典例]已知点O(0,0),A(1,2),B(4,5)及=+t,t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?
[解]因为=+t=(1,2)+t(3,3)=(1+3t,2+3t),
若点P在x轴上,则2+3t=0,
所以t=-23.
若点P在y轴上,则1+3t=0,
所以t=-13.
若点P在第二象限,则1+3t<0,2+3t>0,
所以-23<t<-13.
[一题多变]
1.[变条件]本例中条件“点P在x轴上,点P在y轴上,点P在第二象限”若换为“B为线段AP的中点”试求t的值.
解:由典例知P(1+3t,2+3t),
则1+1+3t2=4,2+2+3t2=5,解得t=2.
2.[变设问]本例条件不变,试问四边形OABP能为平行四边形吗?若能,求出t值;若不能,说明理由.
解:=(1,2),=(3-3t,3-3t).若四边形OABP为平行四边形,则=,
所以3-3t=1,3-3t=2,该方程组无解.
故四边形OABP不能成为平行四边形.
向量中含参数问题的求解
(1)向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.
(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.
层级一学业水平达标
1.如果用i,j分别表示x轴和y轴方向上的单位向量,且A(2,3),B(4,2),则可以表示为()
A.2i+3jB.4i+2j
C.2i-jD.-2i+j
解析:选C记O为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-j.
2.已知=a,且A12,4,B14,2,又λ=12,则λa等于()
A.-18,-1B.14,3
C.18,1D.-14,-3
解析:选A∵a==14,2-12,4=-14,-2,
∴λa=12a=-18,-1.
3.已知向量a=(1,2),2a+b=(3,2),则b=()
A.(1,-2)B.(1,2)
C.(5,6)D.(2,0)
解析:选Ab=(3,2)-2a=(3,2)-(2,4)=(1,-2).
4.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则=()
A.(2,4)B.(3,5)
C.(1,1)D.(-1,-1)
解析:选C=-=-=-(-)=(1,1).
5.已知M(-2,7),N(10,-2),点P是线段MN上的点,且=-2,则P点的坐标为()
A.(-14,16)B.(22,-11)
C.(6,1)D.(2,4)
解析:选D设P(x,y),则=(10-x,-2-y),=(-2-x,7-y),
由=-2得10-x=4+2x,-2-y=-14+2y,所以x=2,y=4.
6.(江苏高考)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
解析:∵ma+nb=(2m+n,m-2n)=(9,-8),
∴2m+n=9,m-2n=-8,∴m=2,n=5,∴m-n=2-5=-3.
答案:-3
7.若A(2,-1),B(4,2),C(1,5),则+2=________.
解析:∵A(2,-1),B(4,2),C(1,5),
∴=(2,3),=(-3,3).
∴+2=(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
8.已知O是坐标原点,点A在第二象限,||=6,∠xOA=150°,向量的坐标为________.
解析:设点A(x,y),则x=||cos150°=6cos150°=-33,
y=||sin150°=6sin150°=3,
即A(-33,3),所以=(-33,3).
答案:(-33,3)
9.已知a=,B点坐标为(1,0),b=(-3,4),c=(-1,1),且a=3b-2c,求点A的坐标.
解:∵b=(-3,4),c=(-1,1),
∴3b-2c=3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),
即a=(-7,10)=.
又B(1,0),设A点坐标为(x,y),
则=(1-x,0-y)=(-7,10),
∴1-x=-7,0-y=10x=8,y=-10,
即A点坐标为(8,-10).
10.已知向量=(4,3),=(-3,-1),点A(-1,-2).
(1)求线段BD的中点M的坐标.
(2)若点P(2,y)满足=λ(λ∈R),求λ与y的值.
解:(1)设B(x1,y1),
因为=(4,3),A(-1,-2),
所以(x1+1,y1+2)=(4,3),
所以x1+1=4,y1+2=3,所以x1=3,y1=1,
所以B(3,1).
同理可得D(-4,-3),
设BD的中点M(x2,y2),
则x2=3-42=-12,y2=1-32=-1,
所以M-12,-1.
(2)由=(3,1)-(2,y)=(1,1-y),
=(-4,-3)-(3,1)=(-7,-4),
又=λ(λ∈R),
所以(1,1-y)=λ(-7,-4)=(-7λ,-4λ),
所以1=-7λ,1-y=-4λ,所以λ=-17,y=37.

层级二应试能力达标
1.已知向量=(2,4),=(0,2),则12=()
A.(-2,-2)B.(2,2)
C.(1,1)D.(-1,-1)
解析:选D12=12(-)=12(-2,-2)=(-1,-1),故选D.
2.已知向量a=(1,2),b=(2,3),c=(3,4),且c=λ1a+λ2b,则λ1,λ2的值分别为()
A.-2,1B.1,-2
C.2,-1D.-1,2
解析:选D∵c=λ1a+λ2b,
∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),
∴λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2.
3.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为()
A.2,72B.2,-12
C.(3,2)D.(1,3)
解析:选A设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故2m=4,2n-4=3,解得m=2,n=72,即点D2,72,故选A.
4.对于任意的两个向量m=(a,b),n=(c,d),规定运算“?”为m?n=(ac-bd,bc+ad),运算“?”为m?n=(a+c,b+d).设f=(p,q),若(1,2)?f=(5,0),则(1,2)?f等于()
A.(4,0)B.(2,0)
C.(0,2)D.(0,-4)
解析:选B由(1,2)f=(5,0),得p-2q=5,2p+q=0,解得p=1,q=-2,所以f=(1,-2),所以(1,2)?f=(1,2)?(1,-2)=(2,0).
5.已知向量i=(1,0),j=(0,1),对坐标平面内的任一向量a,给出下列四个结论:
①存在唯一的一对实数x,y,使得a=(x,y);
②若x1,x2,y1,y2∈R,a=(x1,y1)≠(x2,y2),则x1≠x2,且y1≠y2;
③若x,y∈R,a=(x,y),且a≠0,则a的起点是原点O;
④若x,y∈R,a≠0,且a的终点坐标是(x,y),则a=(x,y).
其中,正确结论有________个.
解析:由平面向量基本定理,可知①正确;例如,a=(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a=(x,y)与a的起点是不是原点无关,故③错误;当a的终点坐标是(x,y)时,a=(x,y)是以a的起点是原点为前提的,故④错误.
答案:1
6.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=22,且∠AOC=π4.设=λ+(λ∈R),则λ=________.
解析:过C作CE⊥x轴于点E,
由∠AOC=π4知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=23.
答案:23
7.在△ABC中,已知A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于点F,求的坐标.
解:∵A(7,8),B(3,5),C(4,3),
∴=(3-7,5-8)=(-4,-3),
=(4-7,3-8)=(-3,-5).
∵D是BC的中点,
∴=12(+)=12(-4-3,-3-5)
=12(-7,-8)=-72,-4.
∵M,N分别为AB,AC的中点,∴F为AD的中点.
∴=-=-12=-12-72,-4=74,2.
8.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),
(1)若++=0,求的坐标.
(2)若=m+n(m,n∈R),且点P在函数y=x+1的图象上,求m-n.
解:(1)设点P的坐标为(x,y),
因为++=0,
又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).
所以6-3x=0,6-3y=0,解得x=2,y=2.
所以点P的坐标为(2,2),
故=(2,2).
(2)设点P的坐标为(x0,y0),因为A(1,1),B(2,3),C(3,2),
所以=(2,3)-(1,1)=(1,2),
=(3,2)-(1,1)=(2,1),
因为=m+n,
所以(x0,y0)=m(1,2)+n(2,1)=(m+2n,2m+n),所以x0=m+2n,y0=2m+n,
两式相减得m-n=y0-x0,
又因为点P在函数y=x+1的图象上,
所以y0-x0=1,所以m-n=1.

高中数学必修四2.3.3平面向量的坐标运算导学案


2.3.3平面向量的坐标运算

【学习目标】
1.理解平面向量的坐标的概念;掌握平面向量的坐标运算;
2.会根据向量的坐标,判断向量是否共线.

【新知自学】
知识回顾:
1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=______________
(1)不共线向量,叫做表示这一平面内所有向量的一组;
(2)由定理可将任一向量在给出基底,的条件下进行分解;分解形式惟一.λ1,λ2是被,,唯一确定的实数对;
2.向量的夹角:已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角,当=,、同向,当=,
、反向,当=,与垂直,记作⊥。
3.向量的坐标表示:在平面直角坐标系中,取=(1,0),=(0,1)作为一组基底,设=x+y,则向量的坐标就是点的坐标。
新知梳理:
1.平面向量的坐标运算
已知:=(),=(),我们考虑如何得出、、的坐标。
设基底为、,
则=
=
即=,
同理可得=
结论:(1)若=(),=(),
则,
即:两个向量和与差的坐标分别等于.
(2)若=(x,y)和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。

思考感悟:
已知,,怎样来求的坐标?
若,,==
则=
结论:一个向量的坐标等于表示此向量的有向线段的

对点练习:
1.设向量,坐标分别是(-1,2),(3,-5)则+=__________,
-=________,3=_______,2+5=___________
2.如右图所示,平面向量的坐标是()
A.B.
C.D.

3.若A(0,1),B(1,2),C(3,4),则2=.

【合作探究】
典例精析:
例1:已知=(2,1),=(-3,4),求+,-,3+4的坐标.

变式1:已知,求:
(1)
(2)
(3)

例2:已知平行四边形ABCD的三个顶点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标。

*变式2:设,,,用表示

【课堂小结】

【当堂达标】
1、设则=___________
2、已知M(3,-2)N(-5,-1),且,则=()
A.(-8,1)B.
C.(-16,2)D.(8,-1)
3、若点A的坐标是,向量=,则点B的坐标为()
A.
B.
C.
D.
4、已知
则=()
A.(6,-2)B.(5,0)
C.(-5,0)D.(0,5)

【课时作业】
1.如图,已知,,
点是的三等分点,则()
A.B.
C.D.

2.若M(3,-2)N(-5,-1)且,则P点的坐标

*3.已知

*4.在△ABC中,点P在BC上,且BP→=2PC→,点Q是AC的中点,若PA→=(4,3),PQ→=(1,5),则BC→=________.

5.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()
A.(1,5)或(5,5)
B.(1,5)或(-3,-5)
C.(5,-5)或(-3,-5)
D.(1,5)或(5,-5)或(-3,-5)

6.已知=(1,2),=(-2,3),=(-1,2),以,为基底,试将分解为的形式.

7.已知三个力=(3,4),=(2,5),=(x,y)的合力++=,求的坐标.

8.已知平行四边形的三个顶点的坐标分别为,求第四个顶点的坐标。

9.已知点,若,
(1)试求为何值时,点P在第一、三象限的交平分线上?
(2)试求为何值时,点P在第三象限?

【延伸探究】
已知点O(0,0),A(1,2),B(4,5),且OP→=OA→+tAB→,试问:
(1)t为何值时,P在x轴上,P在y轴上,P在第二象限?
(2)四边形OABP能否成为平行四边形?若能,求出相应的t值;若不能,请说明理由.

平面向量的正交分解和坐标表示及运算


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的消化课堂内容,使教师有一个简单易懂的教学思路。关于好的教案要怎么样去写呢?以下是小编为大家收集的“平面向量的正交分解和坐标表示及运算”供您参考,希望能够帮助到大家。

平面向量的正交分解和坐标表示及运算
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量
二、讲解新课:
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
…………○1
我们把叫做向量的(直角)坐标,记作
…………○2
其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示.与相等的向量的坐标也为.
特别地,,,.
如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.
设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.
2.平面向量的坐标运算
(1)若,,则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
设基底为、,则
即,同理可得
(2)若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
==(x2,y2)(x1,y1)=(x2x1,y2y1)
(3)若和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
设基底为、,则,即
三、讲解范例:
例1已知A(x1,y1),B(x2,y2),求的坐标.
例2已知=(2,1),=(-3,4),求+,-,3+4的坐标.
例3已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.
解:当平行四边形为ABCD时,由得D1=(2,2)
当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)
例4已知三个力(3,4),(2,5),(x,y)的合力++=,求的坐标.
解:由题设++=得:(3,4)+(2,5)+(x,y)=(0,0)
即:∴∴(5,1)
四、课堂练习:
1.若M(3,-2)N(-5,-1)且,求P点的坐标
2.若A(0,1),B(1,2),C(3,4),则2=.
3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:

高中数学必修四2.3平面向量基本定理及坐标表示小结导学案


2.3平面向量基本定理及坐标表示小结
【学习目标】
1.了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示.
2.会用坐标表示平面向量的线性运算;会用坐标表示的平面向量共线的条件.

【知识重温】
1.平面向量基本定理
如果,是同一平面内的两个______向量,那么对于这一平面内的任意向量,有且只有一对实数,,使=__________.向量,叫做表示这一平面内所有向量的一组基底.

2.平面向量的坐标表示
在平面直角坐标系内,分别取与x轴、y轴______的两个单位向量、作为基底,对于平面内的一个向量,有且只有一对实数x,y,使得=__________,则有序数对(x、y)叫做向量的坐标,记作__________,其中x,y分别叫做在x轴、y轴上的坐标,=(x,y)叫做向量的坐标表示。相等的向量其______相同,______相同的向量是相等向量.

3.平面向量的坐标运算
(1)已知点A(x1,y1),B(x2,y2),则
=__________________,

2)已知=(x1,y1),=(x2,y2),则
+=____________,
-=___________,
λ=___________;
∥(≠0)______________.

(3)=(x1,y1),=(x2,y2),=________________.

思考感悟
1.基底的不唯一性
只要两个向量不共线,就可以作为平面的一组基底,故基底的选取是不唯一。
平面内任意向量都可被这个平面的一组基底,线性表示,且在基底确定后,这样的表示是唯一的.

2.向量坐标与点的坐标区别
在平面直角坐标系中,以原点为起点的向量=,此时点A的坐标与的坐标统一为(x,y),但应注意其表示形式的区别,如点A(x,y),向量==(x,y).

当平面向量平行移动到时,向量不变即==(x,y),但的起点O1和终点A1的坐标都发生了变化.

对点练习:
1.已知向量=(1,-2),=(-3,4),则12等于()
A.(-2,3)B.(2,-3)
C.(2,3)D.(-2,-3)

2.已知向量=(1,1),=(2,x),若+与4-2平行,则实数x的值是()
A.-2B.0
C.1D.2

3.已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()
A.14B.12
C.1D.2

4.下列各组向量中,能作为基底的是()
①=(1,2),=(2,4)
②=(1,1),=(-1,-1)
③=(2,-3),=(-3,2)
④=(5,6),=(7,8).
A.①②B.②③
C.③④D.②④

【自学探究】
考点一平面向量基本定理
例1、如图所示,在平行四边形ABCD中,M,N分别为DC,BC的中点,已知=,=,试用,表示,.

规律总结:应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.解题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.

变式1:如图,在△ABC中,=13,P是BN上的一点,若=m+211,则实数m的值为__________.

考点二平面向量的坐标运算
例2、已知A(-2,4),B(3,-1),C(-3,-4),设=,=,=,且=3,=-2.
(1)求3+-3;
(2)求满足=m+n的实数m,n;
(3)求M,N的坐标及向量的坐标.

规律总结:若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及运算法则的正确使用.
变式2在ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=()
A.(-2,-4)B.(-3,-5)
C.(3,5)D.(2,4)

考点三平面向量共线的坐标表示
例3、平面内给定三个向量=(3,2),=(-1,2),=(4,1).回答下列问题:
(1)若(+k)∥(2-),求实数k;
(2)设=(x,y)满足(-)∥(+)且|-|=1,求.
规律总结:用坐标来表示向量平行,实际上是一种解析几何(或数形结合)的思想,其实质是用代数(主要是方程)计算来代替几何证明,这样就把抽象的逻辑思维转化为了计算.
变式3、
(1)(2013陕西卷)已知向量=(1,m),=(m,2),若∥,则实数m等于()
A.-2B.2
C.-2或2D.0

(2)已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为__________.

【课堂小结】
1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.
2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理.
3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用.
4.要注意区分点的坐标与向量的坐标有可能。
【当堂达标】
1.(2014北京卷)已知向量=(2,4),=(-1,1),则2-=()
A.(5,7)B.(5,9)
C.(3,7)D.(3,9)

2.(2014揭阳二模)已知点A(-1,5)和向量=(2,3),若=3,则点B的坐标为()
A.(7,4)B.(7,14)
C.(5,4)D.(5,14)

3.(2015许昌模拟)在△ABC中,点P在BC上,且=2,点Q是AC的中点,若=(4,3),=(1,5),则等于()
A.(-2,7)B.(-6,21)
C.(2,-7)D.(6,-21)

4.已知两点在直线AB上,求一点P是。

【课时作业】
1、若向量=(x+3,x2-3x-4)与相等,已知A(1,2)和B(3,2),则x的值为()
A、-1B、-1或4
C、4D、1或-4

2、一个平行四边形的三个顶点的坐标分别是(5,7),(-3,5),(3,4),则第四个顶点的坐标不可能是()
A、(-1,8)B,(-5,2)
C、(1l,6)D、(5,2)

3、己知P1(2,-1)、P2(0,5)且点P在P1P2的延长线上,,则P点坐标为()
A、(-2,11)B、(
C、(,3)D、(2,-7)

4、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足,其中α、β∈R,且α+β=1,则点C的轨迹方程为()
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

5、已知点A(-1,5),若向量与向量=(2,3)同向,且=3,则点B的坐标为_____________

6、平面上三个点,分别为A(2,-5),B(3,4),C(-1,-3),D为线段BC的中点,则向量的坐标为_______________

7、已知点A(-1,2),B(2,8)及,,求点C、D和的坐标。

8、已知平行四边形ABCD的一个顶点坐标为A(-2,1),一组对边AB、CD的中点分别为M(3,0)、N(-1,-2),求平行四边形的各个顶点坐标。
【延伸探究】
如图,中AD是三角形BC边上的中线且AE=2EC,BE交AD于G,求及的值。

文章来源:http://m.jab88.com/j/49819.html

更多

最新更新

更多